Do you want to publish a course? Click here

A hydrodynamical model of the circumstellar bubble created by two massive stars

300   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerical models of the wind-blown bubble of massive stars usually only account for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. We develope a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 solar mass star and a 25 solar mass star, and follow its evolution. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cubic cm. We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the wind parameters of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 solar mass stars, respectively), we simulate the supernova explosion of each star. Each star initially creates its own bubble. However, as the bubbles expand they merge, creating a combined, aspherical bubble. The combined bubble evolves over time, influenced by the stellar winds and supernova explosions. The evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium.



rate research

Read More

115 - Jorick S. Vink 2012
Linear spectropolarimetry is a powerful tool to probe circumstellar structures on spatial scales that cannot yet be achieved through direct imaging. In this review I discuss the role that emission-line polarimetry can play in constraining geometrical and physical properties of a wide range of circumstellar environments, varying from the accretion disks around pre-main sequence T Tauri and Herbig Ae/Be stars, to the issue of stellar wind clumping, and the aspherical outflows from the massive star progenitors of supernovae and long gamma-ray bursts at low metallicity.
We report the discovery of two mid-infrared nebulae in the northern hemisphere with the Wide-field Infrared Survey Explorer and the results of optical spectroscopy of their central stars, BD+60 2668 (composed of two components, separated from each other by approx 3 arcsec) and ALS 19653, with the Calar Alto 3.5-m telescope and the Southern African Large Telescope (SALT), respectively. We classify the components of BD+60 2668 as stars of spectral types B0.5 II and B1.5 III. ALS 19653 is indicated in the SIMBAD data base as a planetary nebula, while our observations show that it is a massive B0.5 Ib star, possibly in a binary system. Using the stellar atmosphere code FASTWIND, we derived fundamental parameters of the three stars as well as their surface element abundances, implying that all of them are either on the main sequence or only recently left it. This provides further evidence that massive stars can produce circumstellar nebulae while they are still relatively unevolved. We also report the detection of optical counterparts to the mid-infrared nebulae and a second, more extended optical nebula around ALS 19653, and present the results of SALT spectroscopy of both nebulae associated with this star. The possible origin of the nebulae is discussed.
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.
We study the spatial correlations between the H$alpha$ emission and different types of massive stars in two local galaxies, the Large Magellanic Cloud (LMC) and Messier 33. We compare these to correlations derived for core-collapse supernovae (CCSNe) in the literature to connect CCSNe of different types with the initial masses of their progenitors and to test the validity of progenitor mass estimates which use the pixel statistics method. We obtain samples of evolved massive stars in both galaxies from catalogues with good spatial coverage and/or completeness, and combine them with coordinates of main-sequence stars in the LMC from the SIMBAD database. We calculate the spatial correlation of stars of different classes and spectral types with H$alpha$ emission. We also investigate the effects of distance, noise and positional errors on the pixel statistics method. A higher correlation with H$alpha$ emission is found to correspond to a shorter stellar lifespan, and we conclude that the method can be used as an indicator of the ages, and therefore initial masses, of SN progenitors. We find that the spatial distributions of type II-P SNe and red supergiants of appropriate initial mass ($gtrsim$9 $M_{odot}$) are consistent with each other. We also find the distributions of type Ic SNe and WN stars with initial masses $gtrsim$20 $M_{odot}$ consistent, while supergiants with initial masses around 15 $M_{odot}$ are a better match for type IIb and II-L SNe. The type Ib distribution corresponds to the same stellar types as type II-P, which suggests an origin in interacting binaries. On the other hand, we find that luminous blue variable stars show a much stronger correlation with H$alpha$ emission than do type IIn SNe.
Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf-Rayet star is located at the heart of the system, implicating Apep as a Galactic progenitor system to long-duration gamma-ray bursts. One of the difficulties in interpreting the dynamics of Apep is that the spectral composition of the stars in the system was unclear. Here we present visual to near-infrared spectra that demonstrate that the central component of Apep is composed of two classical Wolf-Rayet stars of carbon- (WC8) and nitrogen-sequence (WN4-6b) subtypes. We argue that such an assignment represents the strongest case of a classical WR+WR binary system in the Milky Way. The terminal line-of-sight wind velocities of the WC8 and WN4-6b stars are measured to be $2100 pm 200$ and $3500 pm 100$ km s$^{-1}$, respectively. If the mass-loss rate of the two stars are typical for their spectral class, the momentum ratio of the colliding winds is expected to be $approx$ 0.4. Since the expansion velocity of the dust plume is significantly smaller than either of the measured terminal velocities, we explore the suggestion that one of the Wolf-Rayet winds is anisotropic. We can recover a shock-compressed wind velocity consistent with the observed dust expansion velocity if the WC8 star produces a significantly slow equatorial wind with a velocity of $approx$530 km s$^{-1}$. Such slow wind speeds can be driven by near-critical rotation of a Wolf-Rayet star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا