Do you want to publish a course? Click here

Froissart Bounds for Amplitudes and Cross Sections at High Energies

108   0   0.0 ( 0 )
 Added by Yakov Azimov
 Publication date 2012
  fields
and research's language is English
 Authors Ya. I. Azimov




Ask ChatGPT about the research

High-energy behavior of total cross sections is discussed in experiment and theory. Origin and meaning of the Froissart bounds are described and explained. Violation of the familiar log-squared bound appears to not violate unitarity (contrary to the common opinion), but correspond to rapid high-energy increase of the amplitude in nonphysical regions.



rate research

Read More

A previously successful model for purely hadronic total cross-sections, based on QCD minijets and soft-gluon resummation, is here applied to the total photoproduction cross section. We find that our model in the gamma p case predicts a rise with energy stronger than in the pp -pbarp case.
121 - E. Gotsman , E. Levin , U. Maor 2007
In this paper we present a two channel model with the goal of reproducing the soft scattering data available in the ISR-Tevatron energy range, and extend the model results to LHC and Cosmic Rays energies. A characteristic feature of the model is that we represent the sum of all diffractive final states at a vertex, by a single diffractive state. Our two main results are: (i) The approach of the elastic scattering amplitude to the black disc bound is very slow, reaching it at energies far higher than the GZK ankle cutoff. (ii) Our predicted survival probability for Higgs exclusive central diffractive production at the LHC is 0.7%, which is considerably smaller than our previous estimate. The above features are compatible with a parton-like model in which the traditional soft Pomeron is replaced by an amplitude describing the partonic system, which issaturated in the soft (long distance) limit.
An almost model-independent parametrization for the ratio of the total hadronic cross section to elastic slope is discussed. Its applicability in studies of asymptotia and analyses of extensive air shower in cosmic-ray physics is also outlined.
161 - R.M. Godbole 2010
A model for both proton and photon total cross-sections is presented and compared with data. The model is based on the eikonal representation, with QCD mini-jets to drive the rise and soft gluon kt-resummation into the Infrared region to tame the excessive rise due to low-x perturbative gluons. We discuss the effects of a singular but integrable expression for the Infrared gluon spectrum on the high energy behaviour of the total cross-section expected in this model.
67 - Tao Han , Yang Ma , Keping Xie 2021
In high-energy leptonic collisions, such as at a multi-TeV muon collider, the collinear splittings of the electroweak (EW) gauge bosons and leptons are the dominant phenomena, and the scattering processes should thus be formulated in terms of the EW parton distribution functions (EW PDFs). We complete this formalism in the Standard Model to include the QCD sector and evaluate the quark and gluon PDFs inside a lepton at the double-log accuracy. The splittings of the photon and subsequently the quarks and gluons control the quark/gluon PDFs below the EW scale. The massive gauge bosons lead to substantial contributions at high scales. The jet production cross section can reach the order of a few nb (50 pb) in $e^+e^-$ ($mu^+mu^-$) collisions, at the TeV c.m. energies with a moderate acceptance cut, that governs the overall event shape up to about $p_T^j sim 60$ GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا