Do you want to publish a course? Click here

The Centaurus A Ultrahigh-Energy Cosmic Ray Excess and the Local Extragalactic Magnetic Field

105   0   0.0 ( 0 )
 Added by Hasan Yuksel
 Publication date 2012
  fields Physics
and research's language is English
 Authors Hasan Yuksel




Ask ChatGPT about the research

The ultrahigh-energy cosmic-ray anisotropies discovered by the Pierre Auger Observatory give the potential to finally address both the particles origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of ~ 10^20 eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to > 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger then conventionally thought. We discuss the implications of this field, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.



rate research

Read More

189 - Denis Allard 2011
In this paper we review the extragalactic propagation of ultrahigh energy cosmic-rays (UHECR). We present the different energy loss processes of protons and nuclei, and their expected influence on energy evolution of the UHECR spectrum and composition. We discuss the possible implications of the recent composition analyses provided by the Pierre Auger Observatory. The influence of extragalactic magnetic fields and possible departures from the rectilinear case are also mentioned as well as the production of secondary cosmogenic neutrinos and photons and the constraints their observation would imply for the UHECRs origin. Finally, we conclude by briefly discussing the relevance of a multi messenger approach for solving the mystery of UHECRs.
We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matter distribution and calculate the flux-weighted UHECRs RMS dipole amplitude taking into account the diffusive transport in the intergalactic magnetic field (IGMF). We find that the flux-weighted RMS dipole amplitude is $sim8$% before entering the Galaxy. The amplitude in the [4-8] EeV is only slightly lower $sim 5$%. The required IGMF is of the order of {5-30 nG}, and the UHECR sources must be relatively nearby, within $sim$300 Mpc. The absence of statistically significant signal in the lower energy bin can be explained if the same nuclei specie dominates the composition in both energy bins and diffusion in the Galactic magnetic field (GMF) reduces the dipole of these lower rigidity particles. Photodisintegration of higher energy UHECRs could also reduce somewhat the lower energy dipole.
We study general implications of the IceCube observations in the energy range from $10^{6}$ GeV to $10^{10}$ GeV for the origin of extragalactic ultrahigh energy cosmic rays assuming that high energy neutrinos are generated by the photomeson production of protons in the extragalactic universe. The PeV-energy neutrino flux observed by IceCube gives strong bounds on the photomeson-production optical depth of protons in their sources and the intensity of the proton component of extragalactic cosmic rays. The neutrino flux implies that extragalactic cosmic-ray sources should have the optical depth greater than $sim 0.01$ and contribute to more than a few percent of the observed bulk of cosmic rays at 10 PeV. If the spectrum of cosmic rays from these extragalactic sources extends well beyond 1 EeV, the neutrino flux indicates that extragalactic cosmic rays are dominant in the observed total cosmic-ray flux at 1 EeV and above, favoring the dip transition model of cosmic rays. The cosmic-ray sources are also required to be efficient neutrino emitters with the optical depth close to unity in this case. The highest energy cosmic-ray ($sim 10^{11}$ GeV) sources should not be strongly evolved with redshift to account for the IceCube observations, suggesting that any cosmic-ray radiation scenarios involving distant powerful astronomical objects with strong cosmological evolution are strongly disfavored. These considerations conclude that none of the known extragalactic astronomical objects can be simultaneously a source of both PeV and trans-EeV energy cosmic rays. We also discuss a possible effect of cosmic-ray propagation in magnetized intergalactic space to the connection between the observed total cosmic-ray flux and neutrino flux.
We use a multimessenger approach to constrain realistic mixed composition models of ultrahigh energy cosmic ray sources using the latest cosmic ray, neutrino, and gamma-ray data. We build on the successful Unger-Farrar-Anchordoqui 2015 (UFA15) model which explains the shape of the spectrum and its complex composition evolution via photodisintegration of accelerated nuclei in the photon field surrounding the source. We explore the constraints which can currently be placed on the redshift evolution of sources and the temperature of the photon field surrounding the sources. We show that a good fit is obtained to all data either with a source which accelerates a narrow range of nuclear masses or a Milky Way-like mix of nuclear compositions, but in the latter case the nearest source should be 30-50 Mpc away from the Milky Way in order to fit observations from the Pierre Auger Observatory. We also ask whether the data allow for a subdominant purely protonic component at UHE in addition to the primary UFA15 mixed composition component. We find that such a two-component model can significantly improve the fit to cosmic ray data while being compatible with current multimessenger data.
The sources of ultrahigh-energy cosmic rays (UHECRs) have been difficult to catch. It was recently pointed out that while sources of UHECR protons exhibit anisotropy patterns that become denser and compressed with rising energy, nucleus-emitting-sources give rise to a cepa stratis (onion-like) structure with layers that become more distant from the source position with rising energy. The peculiar shape of the hot spots from nucleus-accelerators is steered by the competition between energy loss during propagation and deflection on the Galactic magnetic field (GMF). Here, we run a full-blown simulation study to accurately characterize the deflections of UHECR nuclei in the GMF. We show that while the cepa stratis structure provides a global description of anisotropy patterns produced by UHECR nuclei en route to Earth, the hot spots are elongated depending on their location in the sky due to the regular structure of the GMF. We demonstrate that with a high-statistics sample at the high-energy-end of the spectrum, like the one to be collected by NASAs POEMMA mission, the energy dependence of the hot-spot contours could become a useful observable to identify the nuclear composition of UHECRs. This new method to determine the nature of the particle species is complementary to those using observables of extensive air showers, and therefore is unaffected by the large systematic uncertainties of hadronic interaction models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا