Do you want to publish a course? Click here

Wave chaos as signature for depletion of a Bose-Einstein condensate

231   0   0.0 ( 0 )
 Added by Iva Brezinova
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the expansion of repulsively interacting Bose-Einstein condensates (BECs) in shallow one-dimensional potentials. We show for these systems that the onset of wave chaos in the Gross-Pitaevskii equation (GPE), i.e. the onset of exponential separation in Hilbert space of two nearby condensate wave functions, can be used as indication for the onset of depletion of the BEC and the occupation of excited modes within a many-body description. Comparison between the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method and the GPE reveals a close correspondence between the many-body effect of depletion and the mean-field effect of wave chaos for a wide range of single-particle external potentials. In the regime of wave chaos the GPE fails to account for the fine-scale quantum fluctuations because many-body effects beyond the validity of the GPE are non-negligible. Surprisingly, despite the failure of the GPE to account for the depletion, coarse grained expectation values of the single-particle density such as the overall width of the atomic cloud agree very well with the many-body simulations. The time dependent depletion of the condensate could be investigated experimentally, e.g., via decay of coherence of the expanding atom cloud.



rate research

Read More

We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interparticle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.
144 - J. A. Ross , P. Deuar , D. K. Shin 2021
We present observations of quantum depletion in expanding condensates released from a harmonic trap. We confirm experimental observations of slowly-decaying tails in the far-field beyond the thermal component, consistent with the survival of the quantum depletion. Our measurements support the hypothesis that the depletion survives the expansion, and even appears stronger in the far-field than expected before release based on the Bogoliubov theory. This result is in conflict with the hydrodynamic theory which predicts that the in-situ depletion does not survive when atoms are released from a trap. Simulations of our experiment show that the depletion should indeed survive into the far field and become stronger. However, while in qualitative agreement, the final depletion observed in the experiment is much larger than in the simulation. In light of the predicted power-law decay of the momentum density, we discuss general issues inherent in characterizing power laws.
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrodinger equation describing this for arbitrarily strong impurity-boson interaction. We furthermore compare with Quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments and describe a procedure to probe their properties.
132 - Ofir E. Alon 2018
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا