Do you want to publish a course? Click here

The critical line of two-flavor QCD at finite isospin or baryon densities from imaginary chemical potentials

311   0   0.0 ( 0 )
 Added by Massimo D'Elia
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We determine the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density, in the region of imaginary chemical potentials; analytic continuation is then used to prolongate to the region of real chemical potentials. We obtain an accurate determination of the curvatures at zero chemical potential, quantifying the deviation between the case of finite quark and of finite isospin chemical potential. Deviations from a quadratic dependence of the pseudocritical lines on the chemical potential are clearly seen in both cases: we try different extrapolations and, for the case of nonzero isospin chemical potential, confront them with the results of direct Monte Carlo simulations. Finally we find that, as for the finite quark density case, an imaginary isospin chemical potential can strengthen the transition till turning it into strong first order.



rate research

Read More

The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, mu_B and mu_{iso}, by using the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at not only mu_{iso}=mu_B=0 but also mu_{iso}>0 and mu_B=0. In the mu_{iso}-mu_{B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the mu_B-T plane at mu_{iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the mu_{iso}-T plane at mu_B=0 as mu_{iso} increases. The thermodynamics at small T is controlled by sqrt{sigma^2+pi^2} defined by the chiral and pion condensates, sigma and pi.
143 - P. Cea , L. Cosmai , M. DElia 2012
We exploit analytic continuation to prolongate to the region of real chemical potentials the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density obtained in the region of imaginary chemical potentials. We determine the curvatures at zero chemical potential and quantify the deviation between the cases of finite quark and of finite isospin chemical potential. In both circumstances deviations from a quadratic dependence of the pseudocritical lines on the chemical potential are clearly seen. We try different extrapolations and, for the nonzero isospin chemical potential, confront them with the results of direct Monte Carlo simulations. We also find that, as for the finite quark chemical potential, an imaginary isospin chemical potential can strengthen the transition till turning it into strong first order.
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials mu, performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. Lattice QCD simulations are done on an 8^3 times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. We test the analytic continuation of physical quantities from imaginary mu to real mu by comparing lattice QCD results calculated at real mu with the result of analytic function the coefficients of which are determined from lattice QCD results at imaginary mu. We also test the validity of the PNJL model by comparing model results with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the transition and confinement regions. This problem is improved by introducing the baryon degree of freedom to the model. It is also found that the vector-type four-quark interaction is necessary to explain lattice data on the quark number density.
Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8),mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{pi^+}-M_{pi^0}=4.60(20),mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $bar{MS}$ scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا