No Arabic abstract
We exploit analytic continuation to prolongate to the region of real chemical potentials the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density obtained in the region of imaginary chemical potentials. We determine the curvatures at zero chemical potential and quantify the deviation between the cases of finite quark and of finite isospin chemical potential. In both circumstances deviations from a quadratic dependence of the pseudocritical lines on the chemical potential are clearly seen. We try different extrapolations and, for the nonzero isospin chemical potential, confront them with the results of direct Monte Carlo simulations. We also find that, as for the finite quark chemical potential, an imaginary isospin chemical potential can strengthen the transition till turning it into strong first order.
We determine the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density, in the region of imaginary chemical potentials; analytic continuation is then used to prolongate to the region of real chemical potentials. We obtain an accurate determination of the curvatures at zero chemical potential, quantifying the deviation between the case of finite quark and of finite isospin chemical potential. Deviations from a quadratic dependence of the pseudocritical lines on the chemical potential are clearly seen in both cases: we try different extrapolations and, for the case of nonzero isospin chemical potential, confront them with the results of direct Monte Carlo simulations. Finally we find that, as for the finite quark density case, an imaginary isospin chemical potential can strengthen the transition till turning it into strong first order.
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.
The method of analytic continuation is one of the most powerful tools to circumvent the sign problem in lattice QCD. The present study is part of a larger project which, based on the investigation of QCD-like theories which are free of the sign problem, is aimed at testing the validity of the method of analytic continuation and at improving its predictivity, in view of its application to real QCD. We have shown that a considerable improvement can be achieved if suitable functions are used to interpolate data with imaginary chemical potential. We present results obtained in a theory free of the sign problem such as two-color QCD at finite chemical potential.
We study the phase structure and condensates of two-flavor QCD at finite isospin chemical potential in the framework of a confining, Dyson-Schwinger equation model. We find that the pion superfluidity phase is favored at high enough isospin chemical potential. A new gauge invariant mixed quark-gluon condensate induced by isospin chemical potential is proposed based on Operator Product Expansion. We investigate the sign and magnitude of this new condensate and show that its an important condensate in QCD sum rules at finite isospin density.
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.