Do you want to publish a course? Click here

Precursor of Sunspot Penumbral Formation discovered with Hinode SOT Observations

109   0   0.0 ( 0 )
 Added by Toshifumi Shimizu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appeared in NOAA Active Region 11039. We found an annular zone (width 3-5) surrounding the umbra (pore) in Ca II H images before the penumbra is formed around the umbra. The penumbra was developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were moved to be distributed at the outer edge of the annular zone and did not come into the zone. There is no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, much before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.



rate research

Read More

Vector magnetic fields of moving magnetic features (MMFs) are well observed with the Solar Optical Telescope (SOT) aboard the Hinode satellite. We focus on the evolution of three MMFs with the SOT in this study. We found that an MMF having relatively vertical fields with polarity same as the sunspot is detached from the penumbra around the granules appeared in the outer penumbra. This suggests that granular motions in the outer penumbra are responsible for the disintegration of the sunspot. Two MMFs with polarity opposite to the sunspot are located around the outer edge of horizontal fields extending from the penumbra. This is an evidence that the MMFs with polarity opposite to the sunspot are prolongation of penumbral horizontal fields. Radshifts larger than sonic velocity in the photosphere are detected for some of the MMFs with polarity opposite to the sunspot.
Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al (2007) using the CaII H-line filter on {it Hinode}s Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbra (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on internal structure of sunspot penumbral filaments. Using data of a sunspot from {it Hinode}/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) onboard the {it Solar Dynamics Observatory}, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except a few of them showing up in the 1600 AA images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite polarity fields at the tails of some penumbral filaments is seen in Stokes-V images. These large tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is ambiguous. We infer that none of the PJs, including the large tail PJs, directly heat the corona in ARs significantly, but any penumbral jet might drive some coronal heating indirectly via generation of Alfven waves and/or braiding of the coronal field.
Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthens the theory of the coronal heating and solar wind through energy transport and photospheric oscillations. Methods. Using time sequences from the HINODE/SOT in Ca II H line, we investigate oscillations found in intensity profiles at different heights above the solar limb. We use the Fourier and wavelet analysis to measure dominant frequency peaks of intensity at the heights, and phase difference between oscillations at two certain heights, to find evidence for the coherency of the oscillations. Finally, we can calculate the energy and the mass transported by spicules providing energy equilibrium, according to density values of spicules at different heights. To extend this work, we can also consider coherent oscillations at different latitudes and suggest to study of oscillations which may be obtained from observations of other satellites.
The Solar Optical Telescope onboard Hinode revealed the fine-scale structure of the Evershed flow and its relation to the filamentary structures of the sunspot penumbra. The Evershed flow is confined in narrow channels with nearly horizontal magnetic fields, embedded in a deep layer of the penumbral atmosphere. It is a dynamic phenomenon with flow velocity close to the photospheric sound speed. Individual flow channels are associated with tiny upflows of hot gas (sources) at the inner end and downflows (sinks) at the outer end. SOT/Hinode also discovered ``twisting motions of penumbral filaments, which may be attributed to the convective nature of the Evershed flow. The Evershed effect may be understood as a natural consequence of thermal convection under a strong, inclined magnetic field. Current penumbral models are discussed in the lights of these new Hinode observations.
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 AA images, which have 1.2arcsec spatial resolution, but become readily apparent with Hi-Cs five times better spatial resolution. We supplement Hi-C data with data from AIAs 193 AA passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-Cs 3-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, recently reported by cite{tian14}, and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the lightcurves of the BDs to test whether the Hi-C BDs have transition region (TR) temperature like that of the IRIS BDs. The lightcurves of most Hi-C BDs peak together in different AIA channels indicating that their temperature is likely in the range of the cooler TR ($1-4times 10^5$ K).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا