In this paper we study the fermion quasi-normal modes of a 4-dimensional rotating black-hole using the WKB(J) (to third and sixth order) and the AIM semi-analytic methods in the massless Dirac fermion sector. These semi-analytic approximations are computed in a pedagogical manner with comparisons made to the numerical values of the quasi-normal mode frequencies presented in the literature. It was found that The WKB(J) method and AIM show good agreement with direct numerical solutions for low values of the overtone number $n$ and angular quantum number l.
We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein vacuum equations within a Bondi-Sachs, or null cone, formalism. We develop a numerical method to calculate the quasi-normal modes, and present results for the case $ell=2$. The values obtained are different to those of a Schwarzschild black hole, and we interpret them as quasi-normal modes of a Schwarzschild white hole.
The ringdown of a perturbed black hole contains fundamental information about space-time in the form of Quasi Normal Modes (QNM). Modifications to general relativity, or extended profiles of other fields surrounding the black hole, so called black hole hair, can perturb the QNM frequencies. Previous works have examined the QNM frequencies of spherically symmetric dirty black holes - that is black holes surrounded by arbitrary matter fields. Such analyses were restricted to static systems, making the assumption that the metric perturbation was independent of time. However, in most physical cases such black holes will actually be growing dynamically due to accretion of the surrounding matter. Here we develop a perturbative analytic method that allows us to compute for the first time the time dependent QNM deviations of such growing dirty black holes. Whilst both are small, we show that the change in QNM frequency due to the accretion can be of the same order or larger than the change due to the static matter distribution itself, and therefore should not be neglected in such calculations. We present the case of spherically symmetric accretion of a complex scalar field as an illustrative example, but the method has the potential to be extended to more complicated cases.
We study quasinormal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in seven and eight dimensions. We find that the QNFs show remarkable features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term, the real part of QNFs increases, but the decay rate becomes small irrespective of the mass of the black hole. For small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type perturbations of the metric field, the tendency of the real part of QNFs is opposite to that of the scalar field. The QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the scalar type perturbations of the metric field is similar to the vector type. However, available data are rather sparse, which indicates that the WKB method is not applicable to many models for this sector.
It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with frequencies and damping times given by the quasi-normal mode spectrum of the final Kerr black hole. An observational test of this scenario, often referred to as black hole spectroscopy, is one of the major goals of gravitational wave astronomy. It was recently suggested that the quasi-normal mode description including the higher overtones might hold even right after the remnant black hole is first formed. At these times, the black hole is expected to be highly dynamical and non-linear effects are likely to be important. In this paper we investigate this remarkable scenario in terms of the horizon dynamics. Working with high accuracy simulations of a simple configuration, namely the head-on collision of two non-spinning black holes with unequal masses, we study the dynamics of the final common horizon in terms of its shear and its multipole moments. We show that they are indeed well described by a superposition of ringdown modes as long as a sufficiently large number of higher overtones are included. This description holds even for the highly dynamical final black hole shortly after its formation. We discuss the implications and caveats of this result for black hole spectroscopy and for our understanding of the approach to equilibrium.
We use the isometric embedding of the spatial horizon of fast rotating Kerr black hole in a hyperbolic space to compute the quasi-local mass of the horizon for any value of the spin parameter $j=J/m^2$. The mass is monotonically decreasing from twice the ADM mass at $j=0$ to $1.76569m$ at $j=sqrt{3}/2$. It then monotonicaly increases to a maximum around $j=0.99907$, and finally decreases to $2.01966m$ for $j=1$ which corresponds to the extreme Kerr black hole.