Do you want to publish a course? Click here

Note on scale invariance and self-similar evolution in (3+1)-dimensional signum-Gordon model

126   0   0.0 ( 0 )
 Added by Henryk Arodz
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several classes of self-similar, spherically symmetric solutions of relativistic wave equation with nonlinear term of the form sign(phi) are presented. They are constructed from cubic polynomials in the scale invariant variable t/r. One class of solutions describes a process of wiping out the initial field, another an accumulation of field energy in a finite and growing region of space.



rate research

Read More

221 - H. Arodz , Z. Swierczynski 2011
We present a new class of oscillons in the (1+1)-dimensional signum-Gordon model. The oscillons periodically move to and fro in the space. They have finite total energy, finite size, and are strictly periodic in time. The corresponding solutions of the scalar field equation are explicitly constructed from the second order polynomials in the time and position coordinates.
We present explicit solutions of the signum-Gordon scalar field equation which have finite energy and are periodic in time. Such oscillons have a strictly finite size. They do not emit radiation.
242 - Jakub Lis 2009
The regularized signum-Gordon potential has a smooth minimum and is linear in the modulus of the field value for higher amplitudes. The Q-ball solutions in this model are investigated. Their existence for charges large enough is demonstrated. In three dimensions numerical solutions are presented and the absolute stability of large Q-balls is proved. It is also shown, that the solutions of the regularized model approach uniformly the solution of the unregularized signum-Gordon model. From the stability of Q-balls in the regularized model follows the stability of the solutions in the original theory.
251 - M. Jimbo , T. Miwa , F. Smirnov 2011
Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We show that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of $B$-field is changed) by utilizing the most general classical $r$-matrix. Furthermore, the coefficient of $B$-field is determined to be the original value from the requirement that the one-loop $beta$-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا