Do you want to publish a course? Click here

Interference mechanism of magnetoresistance in variable range hopping conduction: the effect of paramagnetic electron spins and continuous spectrum of scatterer energies

231   0   0.0 ( 0 )
 Added by Andrey Shumilin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite the fact that the problem of interference mechanism of magnetoresistance in semiconductors with hopping conductivity was widely discussed, most of existing studies were focused on the model of spinless electrons. This model can be justified only when all electron spins are frozen. However there is always an admixture of free spins in the semiconductor. This study presents the theory of interference contribution to magnetoresistance that explicitly includes effects of both frozen and free electron spins. We consider the cases of small and large number of scatterers in the hopping event. For the case of large number of scatterers the approach is used that takes into account the dispersion of the scatterer energies. We compare our results with existing experimental data.



rate research

Read More

171 - L.B. Ioffe , B.Z. Spivak 2013
We predict the universal power law dependence of localization length on magnetic field in the strongly localized regime. This effect is due to the orbital quantum interference. Physically, this dependence shows up in an anomalously large negative magnetoresistance in the hopping regime. The reason for the universality is that the problem of the electron tunneling in a random media belongs to the same universality class as directed polymer problem even in the case of wave functions of random sign. We present numerical simulations which prove this conjecture. We discuss the existing experiments that show anomalously large magnetoresistance. We also discuss the role of localized spins in real materials and the spin polarizing effect of magnetic field.
We have studied the AC response of a hopping model in the variable range hopping regime by dynamical Monte Carlo simulations. We find that the conductivity as function of frequency follows a universal scaling law. We also compare the numerical results to various theoretical predictions. Finally, we study the form of the conducting network as function of frequency.
We investigate the magneto-conductance (MC) anisotropy in the variable range hopping regime, caused by quantum interference effects in three dimensions. When no spin-orbit scattering is included, there is an increase in the localization length (as in two dimensions), producing a large positive MC. By contrast, with spin-orbit scattering present, there is no change in the localization length, and only a small increase in the overall tunneling amplitude. The numerical data for small magnetic fields $B$, and hopping lengths $t$, can be collapsed by using scaling variables $B_perp t^{3/2}$, and $B_parallel t$ in the perpendicular and parallel field orientations respectively. This is in agreement with the flux through a `cigar--shaped region with a diffusive transverse dimension proportional to $sqrt{t}$. If a single hop dominates the conductivity of the sample, this leads to a characteristic orientational `finger print for the MC anisotropy. However, we estimate that many hops contribute to conductivity of typical samples, and thus averaging over critical hop orientations renders the bulk sample isotropic, as seen experimentally. Anisotropy appears for thin films, when the length of the hop is comparable to the thickness. The hops are then restricted to align with the sample plane, leading to different MC behaviors parallel and perpendicular to it, even after averaging over many hops. We predict the variations of such anisotropy with both the hop size and the magnetic field strength. An orientational bias produced by strong electric fields will also lead to MC anisotropy.
71 - M. Wohlgenannt 2006
We develop a theory of magnetoresistance based on variable-range hopping. An exponentially large, low-field and necessarily positive magnetoresistance effect is predicted in the presence of Hubbard interaction and spin-dynamics under certain conditions. The theory was developed with the recently discovered organic magnetoresistance in mind. To account for the experimental observation that the organic magnetoresistance effect can also be negative, we tentatively amend the theory with a mechanism of bipolaron formation.
Effects of strong electric fields on hopping conductivity are studied theoretically. Monte-Carlo computer simulations show that the analytical theory of Nguyen and Shklovskii [Solid State Commun. 38, 99 (1981)] provides an accurate description of hopping transport in the limit of very high electric fields and low concentrations of charge carriers as compared to the concentration of localization sites and also at the relative concentration of carriers equal to 0.5. At intermediate concentrations of carriers between 0.1 and 0.5 computer simulations evidence essential deviations from the results of the existing analytical theories. The theory of Nguyen and Shklovskii also predicts a negative differential hopping conductivity at high electric fields. Our numerical calculations confirm this prediction qualitatively. However the field dependence of the drift velocity of charge carriers obtained numerically differs essentially from the one predicted so far. Analytical theory is further developed so that its agreement with numerical results is essentially improved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا