Do you want to publish a course? Click here

Apparent Lorentz violation with superluminal Majorana neutrinos at OPERA?

221   0   0.0 ( 0 )
 Added by Fabrizio Tamburini
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

From the data release of OPERA - CNGS experiment, and publicly announced on 23 September 2011, we cast a phenomenological model based on a Majorana neutrino state carrying a fictitious imaginary mass term, already discussed by Majorana in 1932. This mass term can be induced by the interaction with the matter of the Earths crust during the 735 Km travel. Within the experimental errors, we prove that the model fits with OPERA, MINOS and supernova SN1987a data. Possible violations to Lorentz invariance due to quantum gravity effects have been considered.



rate research

Read More

The effective Majorana mass which determines the rate of the neutrinoless double beta decay, |<m>|, is considered in the case of three-neutrino mixing and massive Majorana neutrinos. Assuming a rather precise determination of the parameters characterizing the neutrino oscillation solutions of the solar and atmospheric neutrino problems has been made, we discuss the information a measurement of |<m>| > (0.005 - 0.010) eV can provide on the value of the lightest neutrino mass and on the CP-violation in the lepton sector. The implications of combining a measurement of |<m>| with future measurement of the neutrino mass in tritium beta-decay experiments for the possible determination of leptonic CP-violation are emphasized.
124 - Shu Zhang , Bo-Qiang Ma 2014
The constancy of light speed is a basic assumption in Einsteins special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation~(LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass~8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.
116 - N. D. Hari Dass 2011
This is a brief note discussing the energy dependence of superluminal neutrino velocities recently claimed by OPERA [1,2]. The analysis is based on the data provided there on this issue, as well as on consistency with neutrino data from SN1987a as recorded by the Kamioka detector [3]. It is seen that it is quite difficult to reconcile OPERA with SN1987a. The so called Coleman- Glashow dispersion relations do not do that well, if applied at all neutrino energies. The so called quantum gravity inspired dispersion relations perform far worse. Near OPERA energies both an energy-independent velocity, as well as a linear energy dependence with an offset that is comparable in value to the observed {delta}v by OPERA at 28.1 GeV works very well. Our analysis shows that precision arrival time data from SN1987a still allow for superluminal behaviour for supernova neutrinos. A smooth interpolation is given that reconciles OPERA and SN1987a quite well. It suggests a fourth power energy dependence for {delta}v of supernova neutrinos. This behaviour is insensitive to whether the velocities are energy-independent, or linearly dependent on energy, near OPERA scale of energies. Suggestions are made for experimental checks for these relations.
70 - S. Pascoli , S. T. Petcov 2001
If the present or upcoming searches for neutrinoless double beta decay give a positive result, the Majorana nature of massive neutrinos will be established. From the determination of the value of the effective Majorana mass parameter |<m>|, it would be possible to obtain information on the type of neutrino mass spectrum. Assuming 3-neutrino mixing and massive Majorana neutrinos, we discuss the information a measurement of, or an upper bound on, |<m>| can provide on the value of the lightest neutrino mass m1. With additional data on the neutrino masses obtained in tritium beta decay experiments, it might be possible to establish whether the CP-symmetry is violated in the lepton sector. This would require very high precision measurements. If CP-invariance holds, the allowed patterns of the relative CP-parities of the massive Majorana neutrinos would be determined.
The IceCube collaboration has recently announced the discovery of ultra-high energy neutrino events. These neutrinos can be used to probe their production source, as well as leptonic mixing parameters. In this work, we have used the first IceCube data to constrain the leptonic CP violating phase $delta_{cp}$. For this, we have analyzed the data in the form of flux ratios. We find that the fit to $delta_{cp}$ depends on the assumptions made on the production mechanism of these astrophyscial neutrinos. Consequently, we also use this data to impose constraints on the sources of the neutrinos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا