No Arabic abstract
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised house-keeping heat and we obtain an integral fluctuation theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal which restricts consideration of directional variables such as velocity.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second, the definition of entropy production rate which is nonnegative and vanishes in thermodynamic equilibrium. Based on these assumptions we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium, and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasi-equilibrium processes, the convexity of the equilibrium surface, the monotonic time behavior of thermodynamic potentials, including entropy, the bilinear form of the entropy production rate, the Onsager coefficients and reciprocal relations, and the nonequilibrium steady states of chemical reactions.
We investigate the decomposition of the total entropy production in continuous stochastic dynamics when there are odd-parity variables that change their signs under time reversal. The first component of the entropy production, which satisfies the fluctuation theorem, is associated with the usual excess heat that appears during transitions between stationary states. The remaining housekeeping part of the entropy production can be further split into two parts. We show that this decomposition can be achieved in infinitely many ways characterized by a single parameter {sigma}. For an arbitrary value of {sigma}, one of the two parts contributing to the housekeeping entropy production satisfies the fluctuation theorem. We show that for a range of {sigma} values this part can be associated with the breakage of the detailed balance in the steady state, and can be regarded as a continuous version of the corresponding entropy production that has been obtained previously for discrete state variables. The other part of the housekeeping entropy does not satisfy the fluctuation theorem and is related to the parity asymmetry of the stationary state distribution. We discuss our results in connection with the difference between continuous and discrete variable cases especially in the conditions for the detailed balance and the parity symmetry of the stationary state distribution.
We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, significantly extending several recent results. We further show that achieving zero dissipation in a system implies that detailed balance obtains, and as a consequence there is zero power production. We obtain inequalities for power production under more general circumstances and show that near equilibrium obtaining maximum power production requires dissipation to be of the same order of magnitude.
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees the compatibility of the accompanying processes with the non-equilibrium entropy is proved. The non-equilibrium entropy is defined as a state function on the non-equilibrium state space containing the contact temperature as a non-equilibrium variable. If the entropy production does not depend on the internal energy, the contact temperature changes into the thermostatic temperature also in non-equilibrium, a fact which allows to use temperature as a primitive concept in non-equilibrium. The dissipation inequality is revisited, and an efficiency of generalized cyclic processes beyond the Carnot process is achieved.
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states, and on appropriate definitions of entropy and entropy production, The system is in contact with a heat reservoir, and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlogl reaction models.