We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, significantly extending several recent results. We further show that achieving zero dissipation in a system implies that detailed balance obtains, and as a consequence there is zero power production. We obtain inequalities for power production under more general circumstances and show that near equilibrium obtaining maximum power production requires dissipation to be of the same order of magnitude.
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperperturbed dynamics. In these relations, typically one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in non-standard cases, including driven granular media, systems with a multiscale structure, active matter and systems showing anomalous diffusion.
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised house-keeping heat and we obtain an integral fluctuation theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal which restricts consideration of directional variables such as velocity.
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. Here we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the textit{velocity} of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.
During a spontaneous change, a macroscopic physical system will evolve towards a macro-state with more realizations. This observation is at the basis of the Statistical Mechanical version of the Second Law of Thermodynamics, and it provides an interpretation of entropy in terms of probabilities. However, we cannot rely on the statistical-mechanical expressions for entropy in systems that are far from equilibrium. In this paper, we compare various extensions of the definition of entropy, which have been proposed for non-equilibrium systems. It has recently been proposed that measures of information density may serve to quantify entropy in both equilibrium and nonequilibrium systems. We propose a new bit-wise method to measure the information density for off lattice systems. This method does not rely on coarse-graining of the particle coordinates. We then compare different estimates of the system entropy, based on information density and on the structural properties of the system, and check if the various entropies are mutually consistent and, importantly, whether they can detect non-trivial ordering phenomena. We find that, except for simple (one-dimensional) cases, the different methods yield answers that are at best qualitatively similar, and often not even that, although in several cases, different entropy estimates do detect ordering phenomena qualitatively. Our entropy estimates based on bit-wise data compression contain no adjustable scaling factor, and show large quantitative differences with the thermodynamic entropy obtained from equilibrium simulations. Hence, our results suggest that, at present, there is not yet a single, structure-based entropy definition that has general validity for equilibrium and non equilibrium systems.
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we build on earlier work on the interplay between the relative cost and benefits of information in producing work in cyclic operation of thermodynamic engines (by Sandberg etal. 2014). Specifically, we study the general case of overdamped particles in a time-varying potential (control action) in feedback that utilizes continuous measurements (nonlinear filtering) of a thermodynamic ensemble, to produce suitable adaptations of the second law of thermodynamics that involve information.
B. Gaveau
,M. Moreau
,L. S. Schulman
.
(2008)
.
"Generalized Clausius relation and power dissipation in non equilibrium stochastic systems"
.
L. S. Schulman
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا