Do you want to publish a course? Click here

Rate Region of the Vector Gaussian One-Helper Source-Coding Problem

213   0   0.0 ( 0 )
 Added by Md Saifur Rahman
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We determine the rate region of the vector Gaussian one-helper source-coding problem under a covariance matrix distortion constraint. The rate region is achieved by a simple scheme that separates the lossy vector quantization from the lossless spatial compression. The converse is established by extending and combining three analysis techniques that have been employed in the past to obtain partial results for the problem.



rate research

Read More

It is well known that {em superposition coding}, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999). However, the characterization of the coding rate region therein involves uncountably many linear inequalities and the constant term (i.e., the lower bound) in each inequality is given in terms of the solution of a linear optimization problem. Thus this implicit characterization of the coding rate region does not enable the determination of the achievability of a given rate tuple. In this paper, we first obtain closed-form expressions of these uncountably many inequalities. Then we identify a finite subset of inequalities that is sufficient for characterizing the coding rate region. This gives an explicit characterization of the coding rate region. We further show by the symmetry of the problem that only a much smaller subset of this finite set of inequalities needs to be verified in determining the achievability of a given rate tuple. Yet, the cardinality of this smaller set grows at least exponentially fast with $L$. We also present a subset entropy inequality, which together with our explicit characterization of the coding rate region, is sufficient for proving the optimality of superposition coding.
589 - Oliver Kosut , Lang Tong 2007
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown number of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center. Three different forms of the problem are considered. The first is a variable-rate setup, in which the decoder adaptively chooses the rates at which the sensors transmit. An explicit characterization of the variable-rate minimum achievable sum rate is stated, given by the maximum entropy over the set of distributions indistinguishable from the true source distribution by the decoder. In addition, two forms of the fixed-rate problem are considered, one with deterministic coding and one with randomized coding. The achievable rate regions are given for both these problems, with a larger region achievable using randomized coding, though both are suboptimal compared to variable-rate coding.
An encoder, subject to a rate constraint, wishes to describe a Gaussian source under squared error distortion. The decoder, besides receiving the encoders description, also observes side information consisting of uncompressed source symbol subject to slow fading and noise. The decoder knows the fading realization but the encoder knows only its distribution. The rate-distortion function that simultaneously satisfies the distortion constraints for all fading states was derived by Heegard and Berger. A layered encoding strategy is considered in which each codeword layer targets a given fading state. When the side-information channel has two discrete fading states, the expected distortion is minimized by optimally allocating the encoding rate between the two codeword layers. For multiple fading states, the minimum expected distortion is formulated as the solution of a convex optimization problem with linearly many variables and constraints. Through a limiting process on the primal and dual solutions, it is shown that single-layer rate allocation is optimal when the fading probability density function is continuous and quasiconcave (e.g., Rayleigh, Rician, Nakagami, and log-normal). In particular, under Rayleigh fading, the optimal single codeword layer targets the least favorable state as if the side information was absent.
This paper presents a construction for high-rate MDS codes that enable bandwidth-efficient repair of a single node. Such MDS codes are also referred to as the minimum storage regenerating (MSR) codes in the distributed storage literature. The construction presented in this paper generates MSR codes for all possible number of helper nodes $d$ as $d$ is a design parameter in the construction. Furthermore, the obtained MSR codes have polynomial sub-packetization (a.k.a. node size) $alpha$. The construction is built on the recent code proposed by Sasidharan et al. [1], which works only for $d = n-1$, i.e., where all the remaining nodes serve as the helper nodes for the bandwidth-efficient repair of a single node. The results of this paper broaden the set of parameters where the constructions of MSR codes were known earlier.
The distributed remote source coding (so-called CEO) problem is studied in the case where the underlying source, not necessarily Gaussian, has finite differential entropy and the observation noise is Gaussian. The main result is a new lower bound for the sum-rate-distortion function under arbitrary distortion measures. When specialized to the case of mean-squared error, it is shown that the bound exactly mirrors a corresponding upper bound, except that the upper bound has the source power (variance) whereas the lower bound has the source entropy power. Bounds exhibiting this pleasing duality of power and entropy power have been well known for direct and centralized source coding since Shannons work. While the bounds hold generally, their value is most pronounced when interpreted as a function of the number of agents in the CEO problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا