No Arabic abstract
This paper presents a construction for high-rate MDS codes that enable bandwidth-efficient repair of a single node. Such MDS codes are also referred to as the minimum storage regenerating (MSR) codes in the distributed storage literature. The construction presented in this paper generates MSR codes for all possible number of helper nodes $d$ as $d$ is a design parameter in the construction. Furthermore, the obtained MSR codes have polynomial sub-packetization (a.k.a. node size) $alpha$. The construction is built on the recent code proposed by Sasidharan et al. [1], which works only for $d = n-1$, i.e., where all the remaining nodes serve as the helper nodes for the bandwidth-efficient repair of a single node. The results of this paper broaden the set of parameters where the constructions of MSR codes were known earlier.
We determine the rate region of the vector Gaussian one-helper source-coding problem under a covariance matrix distortion constraint. The rate region is achieved by a simple scheme that separates the lossy vector quantization from the lossless spatial compression. The converse is established by extending and combining three analysis techniques that have been employed in the past to obtain partial results for the problem.
A code construction and repair scheme for optimal functional regeneration of multiple node failures is presented, which is based on stitching together short MDS codes on carefully chosen sets of points lying on a linearized polynomial. The nodes are connected wirelessly, hence all transmissions by helper nodes during a repair round are available to all the nodes being repaired. The scheme is simple and practical because of low subpacketization, low I/O cost and low computational cost. Achievability of the minimum-bandwidth regenerating (MBR) point, as well as an interior point, on the optimal storage-repair bandwidth tradeoff curve is shown. The subspace properties derived in the paper provide insight into the general properties of functional regenerating codes.
This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathbb{L}[G]$, and we relate this point of view with usual notions of rank-metric codes in $mathbb{L}^N$ or in $mathbb{K}^{Ntimes N}$, where $N = [mathbb{L} : mathbb{K}]$. We then adapt the notion of error-correcting pairs to this context, in order to provide a non-trivial decoding algorithm for these codes. We then focus on the case where $G$ is abelian, which leads us to see codewords as elements of a multivariate skew polynomial ring. We prove that we can bound the dimension of the vector space of zeroes of these polynomials, depending of their degree. This result can be seen as an analogue of Alon-Furedi theorem -- and by means, of Schwartz-Zippel lemma -- in the rank metric. Finally, we construct the counterparts of Reed-Muller codes in the rank metric, and we give their parameters. We also show the connection between these codes and classical Reed-Muller codes in the case where $mathbb{L}$ is a Kummer extension.
Polar codes are the first class of constructive channel codes achieving the symmetric capacity of the binary-input discrete memoryless channels. But the corresponding code length is limited to the power of two. In this paper, we establish a systematic framework to design the rate-compatible punctured polar (RCPP) codes with arbitrary code length. A new theoretic tool, called polar spectra, is proposed to count the number of paths on the code tree with the same number of zeros or ones respectively. Furthermore, a spectrum distance SD0 (SD1) and a joint spectrum distance (JSD) are presented as performance criteria to optimize the puncturing tables. For the capacity-zero puncturing mode (punctured bits are unknown to the decoder), we propose a quasi-uniform puncturing algorithm, analyze the number of equivalent puncturings and prove that this scheme can maximize SD1 and JSD. Similarly, for the capacity-one mode (punctured bits are known to the decoder), we also devise a reversal quasi-uniform puncturing scheme and prove that it has the maximum SD0 and JSD. Both schemes have a universal puncturing table without any exhausted search. These optimal RCPP codes outperform the performance of turbo codes in LTE wireless communication systems.
The paper develops DILOC, a emph{distributive}, emph{iterative} algorithm that locates M sensors in $mathbb{R}^m, mgeq 1$, with respect to a minimal number of m+1 anchors with known locations. The sensors exchange data with their neighbors only; no centralized data processing or communication occurs, nor is there centralized knowledge about the sensors locations. DILOC uses the barycentric coordinates of a sensor with respect to its neighbors that are computed using the Cayley-Menger determinants. These are the determinants of matrices of inter-sensor distances. We show convergence of DILOC by associating with it an absorbing Markov chain whose absorbing states are the anchors. We introduce a stochastic approximation version extending DILOC to random environments when the knowledge about the intercommunications among sensors and the inter-sensor distances are noisy, and the communication links among neighbors fail at random times. We show a.s. convergence of the modified DILOC and characterize the error between the final estimates and the true values of the sensors locations. Numerical studies illustrate DILOC under a variety of deterministic and random operating conditions.