No Arabic abstract
We describe and model emission lines in the first overtone band of CO in the magnetic Herbig Ae star HD 101412. High-resolution CRIRES spectra reveal unusually sharp features which suggest the emission is formed in a thin disk centered at 1 AU with a width 0.32 AU or less. A wider disk will not fit the observations. Previous observations have reached similar conclusions, but the crispness of the new material brings the emitting region into sharp focus.
Despite of the importance of magnetic fields for the full understanding of the properties of accreting Herbig Ae/Be stars, these fields have scarcely been studied over the rotation cycle until now. One reason for the paucity of such observations is the lack of knowledge of their rotation periods. The sharp-lined young Herbig Ae star HD101412 with a strong surface magnetic field became in the last years one of the most studied targets among the Herbig Ae/Be stars. A few months ago we obtained multi-epoch polarimetric spectra of this star with FORS2 to search for a rotation period and to constrain the geometry of the magnetic field. We measured longitudinal magnetic fields on 13 different epochs distributed over 62 days. These new measurements together with our previous measurements of the magnetic field in this star were combined with available photometric observations to determine the rotation period. The search of the rotation period resulted in P=42.076+-0.01d. According to near-infrared imaging studies the star is observed nearly edge-on. The star exhibits a single-wave variation of the longitudinal magnetic field during the stellar rotation cycle. These observations are usually considered as evidence for a dominant dipolar contribution to the magnetic field topology.
The Herbig Ae star HD 169142 is known to have a gaseous disk with a large inner hole, and also a photometrically variable inner dust component in the sub-au region. Following up our previous analysis, we further studied the temporal evolution of inner dust around HD 169142, which may provide information on the evolution from late-stage protoplanetary disks to debris disks. We used near-infrared interferometric observations obtained with VLTI/PIONIER to constrain the dust distribution at three epochs spanning six years. We also studied the photometric variability of HD 169142 using our optical-infrared observations and archival data. Our results indicate that a dust ring at ~0.3 au formed at some time between 2013 and 2018, and then faded (but did not completely disappear) by 2019. The short-term variability resembles that observed in extreme debris disks, and is likely related to short-lived dust of secondary origin, though variable shadowing from the inner ring could be an alternative interpretation. If confirmed, this is the first direct detection of secondary dust production inside a protoplanetary disk.
Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.
The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging between minutes and several years. A continuous, one-minute resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of STars) satellite observations has been analyzed using wavelet, scalegram and dispersion analysis tools. The MOST data have been augmented by sparse observations over 9 seasons from ASAS (All Sky Automated Survey), by previously non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons and by archival measurements dating back half a century ago. Mutually superimposed flares or accretion instabilities grow in size from about 0.0003 of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05 on a time scale of a few years. The resulting variability has properties of stochastic red noise, whose self-similar characteristics are very similar to those observed in cataclysmic binary stars, but with much longer characteristic time scales of hours to days (rather than minutes) and with amplitudes which appear to cease growing in size on time scales of tens of years. In addition to chaotic brightness variations combined with stochastic noise, the MOST data show a weakly defined cyclic signal with a period of about 1.5 days, which may correspond to the rotation of the star.
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features suggest a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features,namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain thespatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 au, a gap, and an outer temperature-gradient disk starting at 5.6 au. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a pre-transitional structure.