Do you want to publish a course? Click here

Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

162   0   0.0 ( 0 )
 Added by David Palao
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalisation constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit.



rate research

Read More

170 - Y. Maezawa , S. Aoki , S. Ejiri 2009
The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature in lattice QCD with 2+1 flavors of improved Wilson quarks. From the simulations on $32^3 times 12$, 10, 8, 6, 4 lattices in the high temperature phase, based on the fixed scale approach, we find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson loop at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the free energy is compared with the results of thermal perturbation theory.
We study the change of the QCD spectrum of low-lying mesons in the presence of an external magnetic field using Wilson fermions in the quenched approximation. Motivated by qualitative differences observed in the spectra of overlap and Wilson fermions for large magnetic fields, we investigate the dependence of the additive quark mass renormalisation on the magnetic field. We provide evidence that the magnetic field changes the critical quark mass both in the free case and on our quenched ensemble. The associated change of the bare quark mass with the magnetic field affects the spectrum and is relevant for the magnetic field dependence of a number of related quantities. We derive Ward identities for lattice and continuum QCD+QED from which we can extract the current quark masses. We also report on a first test of the tuning of the quark masses with the magnetic field using the current quark masses, and show that this tuning resolves the qualitative discrepancy between the Wilson and overlap spectra.
We present results on an analysis of the decay constants f_B and f_Bs with two flavours of sea quark. The calculation has been carried out on 3 different bare gauge couplings and 4 sea quark masses at each gauge coupling, with m_pi/m_rho ranging from 0.8 to 0.6. We employ the Fermilab formalism to perform calculations with heavy quarks whose mass is in the range of the b-quark. A detailed comparison with a quenched calculation using the same action is made to elucidate the effects due to the sea quarks.
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD using the experimentally determined value of $f_{pi^+}$ for normalization. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors---up, down, strange, and charm---and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from $aapprox 0.06$ fm to $0.15$ fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2}) mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5}) mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately two to four times smaller than those of the most precise previous lattice calculations. We also obtain $f_{K^+}/f_{pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.
As computing resources are limited, choosing the parameters for a full Lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from Chiral Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا