No Arabic abstract
As computing resources are limited, choosing the parameters for a full Lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from Chiral Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).
We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuation. Lattice QCD calculations are done on a 16^{3}times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potential is evaluated from the Polyakov-loop correlation functions in the deconfinement phase. As the analytic continuation, the potential calculated at imaginary mu=imu_{rm I} is expanded into a Taylor-expansion series of imu_{rm I}/T up to 4th order and the pure imaginary variable imu_{rm I}/T is replaced by the real one mu_{rm R}/T. At real mu, the 4th-order term weakens mu dependence of the potential sizably. At long distance, all of the color singlet and non-singlet potentials tend to twice the single-quark free energy, indicating that the interactions between heavy quarks are fully color-screened for finite mu. For both real and imaginary mu, the color-singlet q{bar q} and the color-antitriplet qq interaction are attractive, whereas the color-octet q{bar q} and the color-sextet qq interaction are repulsive. The attractive interactions have stronger mu/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary mu, and the mass is extrapolated to real mu by analytic continuation. The screening mass thus obtained has stronger mu dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary mu.
We consider recent progress in algorithms for generating gauge field configurations that include the dynamical effects of light fermions. We survey what has been achieved in recent state-of-the-art computations, and examine the trade-offs between performance and control of systematic errors. We briefly review the use of polynomial and rational approximations in Hybrid Monte Carlo algorithms, and some of the theory of on-shell chiral fermions on the lattice. This provides a theoretical framework within which we compare algorithmic alternatives for their implementation; and again we examine the trade-offs between speed and error control.
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in this first study are fixed to heavier than physical values. The renormalized chiral condensate, quark number susceptibility and the Polyakov loop is measured and the results are compared with the staggered formulation in the fixed N_t approach. The Wilson results at the finest lattice spacing agree with the staggered results at the highest N_t.
We present results of our ongoing determination of string breaking in full QCD with N_f=2 Wilson fermions. Our investigation of the fission of the static quark-antiquark string into a static-light meson-antimeson system is based on dynamical configurations of size 24^3 x 40 produced by the TxL collaboration. Combining various optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. The all-to-all light quark propagators occurring in the transition element are computed from eigenmodes of the Hermitian Wilson-Dirac matrix complemented by stochastic estimates in the orthogonal subspace. We observe a clear signature for level-splitting between ground state and excited potential. Thus, for the first time, string breaking induced by sea quarks is observed in a simulation of 4-dimensional lattice-QCD.
We present results for the static inter-quark potential, lightest glueballs, light hadron spectrum and topological susceptibility using a non-perturbatively improved action on a $16^3times 32$ lattice at a set of values of the bare gauge coupling and bare dynamical quark mass chosen to keep the lattice size fixed in physical units ($sim 1.7$ fm). By comparing these measurements with a matched quenched ensemble, we study the effects due to two degenerate flavours of dynamical quarks. With the greater control over residual lattice spacing effects which these methods afford, we find some evidence of charge screening and some minor effects on the light hadron spectrum over the range of quark masses studied ($M_{PS}/M_{V}ge0.58$). More substantial differences between quenched and unquenched simulations are observed in measurements of topological quantities.