Do you want to publish a course? Click here

Light-matter interaction in a microcavity-controlled graphene transistor

120   0   0.0 ( 0 )
 Added by Michael Engel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.



rate research

Read More

Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at the optical drain and the excitonic signal due to the optical gate. The device also demonstrates experimental proof of principle for all-optical excitonic routers.
245 - Xi Zhang* , Wei Ren* , Elliot Bell 2021
The relativistic charge carriers in monolayer graphene can be manipulated in manners akin to conventional optics (electron-optics): angle-dependent Klein tunneling collimates an electron beam (analogous to a laser), while a Veselago refraction process focuses it (analogous to an optical lens). Both processes have been previously investigated, but the collimation and focusing efficiency have been reported to be relatively low even in state-of-the-art ballistic pn-junction devices. These limitations prevented the realization of more advanced quantum devices based on electron-optical interference, while understanding of the underlying physics remains elusive. Here, we present a novel device architecture of a graphene microcavity defined by carefully-engineered local strain and electrostatic fields. We create a controlled electron-optic interference process at zero magnetic field as a consequence of consecutive Veselago refractions in the microcavity and provide direct experimental evidence through low-temperature electrical transport measurements. The experimentally observed first-, second-, and third-order interference peaks agree quantitatively with the Veselago physics in a microcavity. In addition, we demonstrate decoherence of the interference by an external magnetic field, as the cyclotron radius becomes comparable to the interference length scale. For its application in electron-optics, we utilize Veselago interference to localize uncollimated electrons and characterize its contribution in further improving collimation efficiency. Our work sheds new light on relativistic single-particle physics and provides important technical improvements toward next-generation quantum devices based on the coherent manipulation of electron momentum and trajectory.
We present a novel, graphene-based device concept for high-frequency operation: a hot electron graphene base transistor (GBT). Simulations show that GBTs have high current on/off ratios and high current gain. Simulations and small-signal models indicate that it potentially allows THz operation. Based on energy band considerations we propose a specific materials solution that is compatible with SiGe process lines.
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the interlayer interactions. In this topical review, we cover fabrication and characterization of van der Waals heterosructures with a focus on heterobilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those heterobilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides heterostructures are presented and possible optical transitions between different valleys, appearance of moire patterns and signatures of moire excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.
In a family of experiments carried on all-metallic supercurrent nano-transistors a surprising gating effect has been recently shown. These include the full suppression of the critical supercurrent, the increase of quasiparticle population, the manipulation of the superconducting phase, and the broadening of the switching current distributions. Aside from the high potential for future applications, these findings raised fundamental questions on the origin of these phenomena. To date, two complementary hypotheses are under debate: an electrostatically-triggered orbital polarization at the superconductor surface, or the injection of highly-energetic quasiparticles extracted from the gate. Here, we tackle this crucial issue via a fully suspended gate-controlled Ti nano-transistor. Our geometry allows to eliminate any direct injection of quasiparticles through the substrate thereby making cold electron field emission through the vacuum the only possible charge transport mechanism. With the aid of a fully numerical 3D model in combination with the observed phenomenology and thermal considerations we can rule out, with any realistic likelihood, the occurrence of cold electron field emission. Excluding these two trivial phenomena is pivotal in light of understanding the microscopic nature of gating effect in superconducting nanostructures, which represents an unsolved puzzle in contemporary superconductivity. Yet, from the technological point of view, our suspended fabrication technique provides the enabling technology to implement a variety of applications and fundamental studies combining, for instance, superconductivity with nano-mechanics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا