Do you want to publish a course? Click here

Fabry-Perot Interferometry with Fractional Charges

254   0   0.0 ( 0 )
 Added by Charles M. Marcus
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Resistance oscillations in electronic Fabry-Perot interferometers near fractional quantum Hall (FQH) filling factors 1/3, 2/3, 4/3 and 5/3 in the constrictions are compared to corresponding oscillations near integer quantum Hall (IQH) filling factors in the constrictions, appearing in the same devices and at the same gate voltages. Two-dimensional plots of resistance versus gate voltage and magnetic field indicate that all oscillations are Coulomb dominated. Applying a Coulomb charging model yields an effective tunneling charge e* approx e/3 for all FQH constrictions and e* approx e for IQH constrictions. Surprisingly, we find a common characteristic temperature for FQH oscillations and a different common characteristic temperature for IQH oscillations.



rate research

Read More

Three-dimensional topological insulator (3D TI) nanowires display various interesting magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Here, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g., due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.
We report the observation of an intriguing behaviour in the transport properties of nanodevices operating in a regime between the Fabry-Perot and the Kondo limits. Using ultra-high quality nanotube devices, we study how the conductance oscillates when sweeping the gate voltage. Surprisingly, we observe a four-fold enhancement of the oscillation period upon decreasing temperature, signaling a crossover from single-electron tunneling to Fabry-Perot interference. These results suggest that the Fabry-Perot interference occurs in a regime where electrons are correlated. The link between the measured correlated Fabry-Perot oscillations and the SU(4) Kondo effect is discussed.
Ramsey spectroscopy via coherent population trapping (CPT) is essential in precision measurements. The conventional CPT-Ramsey fringes contain numbers of almost identical oscillations and so that it is difficult to identify the central fringe. Here, we experimentally demonstrate a temporal spinwave Fabry-P{e}rot interferometry via double-$Lambda$ CPT of laser-cooled $^{87}$Rb atoms. Due to the constructive interference of temporal spinwaves, the transmission spectrum appears as a comb of equidistant peaks in frequency domain and thus the central Ramsey fringe can be easily identified. From the optical Bloch equations for our five-level double-$Lambda$ system, the transmission spectrum is analytically explained by the Fabry-P{e}rot interferometry of temporal spinwaves. Due to small amplitude difference between the two Land{e} factors, each peak splits into two when the external magnetic field is not too weak. This peak splitting can be employed to measure an unknown magnetic field without involving magneto-sensitive transitions.
We propose an intrinsic 3D Fabry-Perot type interferometer, coined higher-order interferometer, that utilizes the chiral hinge states of second-order topological insulators and cannot be equivalently mapped to 2D space because of higher-order topology. Quantum interference patterns in the two-terminal conductance of this interferometer are controllable not only by tuning the strength but also, particularly, by rotating the direction of the magnetic field applied perpendicularly to the transport direction. Remarkably, the conductance exhibits a characteristic beating pattern with multiple frequencies with respect to field strength or direction. Our novel interferometer provides feasible and robust magneto-transport signatures to probe the particular hinge states of higher-order topological insulators.
97 - L.G. Herrmann 2007
We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively. It allows to confirm the existence of two nearly degenerate orbitals. At resonance, the transmission of the nanotube approaches unity, and the nanotube becomes noiseless, as observed in quantum point contacts. In this weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا