Do you want to publish a course? Click here

Higgs production and decay with a fourth Standard-Model-like fermion generation

112   0   0.0 ( 0 )
 Added by Ansgar Denner
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

State-of-the-art predictions for the Higgs-boson production cross section via gluon fusion and for all relevant Higgs-boson decay channels are presented in the presence of a fourth Standard-Model-like fermion generation. The qualitative features of the most important differences to the genuine Standard Model are pointed out, and the use of the available tools for the predictions is described. For a generic mass scale of 400-600 GeV in the fourth generation explicit numerical results for the cross section and decay widths are presented, revealing extremely large electroweak radiative corrections, e.g., to the cross section and the Higgs decay into WW or ZZ pairs, where they amount to about -50% or more. This signals the onset of a non-perturbative regime due to the large Yukawa couplings in the fourth generation. An estimate of the respective large theoretical uncertainties is presented as well.



rate research

Read More

We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking doublet, inverted mass hierarchies are possible for both quarks and leptons, but a mass splitting more than M(W) in the quark sector is unlikely. We also find constraints in the case of a heavy (600 GeV) Higgs in a single doublet model. As recent data from the Large Hadron Collider hints at the existence of a resonance at 124.5 GeV and a single Higgs doublet at that mass is inconsistent with a fourth fermion generation, we examine a type II two Higgs doublet model. In this model, there are ranges of parameter space where the Higgs sector can potentially counteract the effects of the fourth generation. Even so, we find that such scenarios produce qualitatively similar fermion mass distributions.
We investigate the effect of introducing a sequential generation of chiral fermions in the Higgs Triplet Model with nontrivial mixing between the doublet and triplet Higgs. We use the available LHC data for Higgs boson production and decay rates, the constraints on the fourth generation masses, and impose electroweak precision constraints from the S, T and U parameters. Our analysis shows that an SM-like Higgs boson state at ~125 GeV can be accommodated in the Higgs Triplet Model with four generations, and thus, that four generations survive collider and electroweak precision constraints in models beyond SM.
In the minimal Standard Model (SM) with four generations (the so called SM4) and in standard two Higgs doublets model (2HDM) setups, e.g., the type II 2HDM with four fermion generations, the contribution of the 4th family heavy leptons to the muon magnetic moment is suppressed and cannot accommodate the measured $ sim 3 sigma$ access with respect to the SM prediction. We show that in a 2HDM for the 4th generation (the 4G2HDM), which we view as a low energy effective theory for dynamical electroweak symmetry breaking, with one of the Higgs doublets coupling only to the 4th family leptons and quarks (thus effectively addressing their large masses), the loop exchanges of the heavy 4th generation neutrino can account for the measured value of the muon anomalous magnetic moment. We also discuss the sensitivity of the lepton flavor violating decays $mu to e gamma$ and $tau to mu gamma$ and of the decay $B_s to mu mu$ to the new couplings which control the muon g-2 in our model.
We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order corrections. As sources of parametric uncertainties we include the masses of the charm, bottom, and top quarks as well as the QCD coupling constant. We compare our results with other predictions in the literature.
We analyse the consequences of the little Higgs model for double Higgs boson production at the LHC and for the partial decay width of the Higgs into two photons. In particular, we study the sensitivity of these processes in terms of the parameters of the model. We find that the little Higgs model contributions are proportional to (v/f)^4 and hence do not change significantly either single or double Higgs production at hadron colliders or the partial decay width of the Higgs into two photons as compared to the standard model predictions. However, when interference and mixing effects are properly taken into account these contributions increase to be of the order of (v/f)^2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا