Do you want to publish a course? Click here

Fast generation of multiparticle entangled state for flux qubits in a circle array of transmission line resonators with tunable coupling

279   0   0.0 ( 0 )
 Added by Z.H. Peng
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a one-step approach to the fast generation of Greenberger-Horne-Zeilinger (GHZ) states in a circuit QED system with superconducting flux qubits. The GHZ state can be generated in about 10 ns, which is much shorter than the coherence time of flux qubits and comparable with the time of single-qubit operation. In our proposal, a time-dependent microwave field is applied to a superconducting transmission line resonator (TLR) and displaces the resonator in a controlled manner, thus inducing indirect qubit-qubit coupling without residual entanglement between the qubits and the resonator. The design of a tunably coupled TLR circle array provides us with the potential for extending this one-step scheme to the case of many qubits coupled via several TLRs.



rate research

Read More

It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic $Lambda$-system and quantum erasure of the Raman-photon path. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for $|psi^{(+)}rangle$ and $|psi^{(-)}rangle$ states of $61.6pm2.3%$ and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to study intensity of quantum entanglement of maximally entangled states. We use a class of seven-qubit quantum states to demonstrate the method, where we express all coefficients of the quantum states in terms of concurrences of pure states of a region. When a critical point of an upper bound of Bells inequality occurs in our quantum states, one of the quantum state is a ground state of the toric code model on a disk manifold. Our result also implies that the maximally entangled states does not suggest local maximum quantum entanglement in our quantum states.
254 - Yueyin Qiu , Wei Xiong , Lin Tian 2014
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coupling between a quantum device and YIG thin film has yet been demonstrated. Here, we propose a scheme to achieve strong coupling between superconducting flux qubits and magnon modes in YIG thin film. Unlike the direct $sqrt{N}$ enhancement factor in coupling to the Kittel mode or other spin ensembles, with N the total number of spins, an additional spatial dependent phase factor needs to be considered when the qubits are magnetically coupled with the magnon modes of finite wavelength. To avoid undesirable cancelation of coupling caused by the symmetrical boundary condition, a CoFeB thin layer is added to one side of the YIG thin film to break the symmetry. Our numerical simulation demonstrates avoided crossing and coherent transfer of quantum information between the flux qubits and the standing spin waves in YIG thin films. We show that the YIG thin film can be used as a tunable switch between two flux qubits, which have modified shape with small direct inductive coupling between them. Our results manifest that it is possible to couple flux qubits while suppressing undesirable cross-talk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا