Do you want to publish a course? Click here

Maximally Entangled State and Bells Inequality in Qubits

151   0   0.0 ( 0 )
 Added by Chen-Te Ma
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to study intensity of quantum entanglement of maximally entangled states. We use a class of seven-qubit quantum states to demonstrate the method, where we express all coefficients of the quantum states in terms of concurrences of pure states of a region. When a critical point of an upper bound of Bells inequality occurs in our quantum states, one of the quantum state is a ground state of the toric code model on a disk manifold. Our result also implies that the maximally entangled states does not suggest local maximum quantum entanglement in our quantum states.



rate research

Read More

The robustness of Bells inequality (in CHSH form) violation by entangled state in the simultaneous presence of colored and white noise in the system is considered. A twophoton polarization state is modeled by twoparameter density matrix. Setting parameter values one can vary the relative fraction of pure entangled Bells state as well as white and colored noise fractions. Bells operator-parameter dependence analysis is made. Computational results are compared with experimental data [quant-ph/0511265] and with results computed using a oneparameter density matrix [doi: 10.1103/PhysRevA.72.052112], which one can get as a special case of the model considered in this work.
Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, due to entanglements key role in achieving and verifying secure communications. Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only recently been demonstrated, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not to date been demonstrated in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. Here we present a simple and robust architecture for achieving this benchmark result in a superconducting system.
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic $Lambda$-system and quantum erasure of the Raman-photon path. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for $|psi^{(+)}rangle$ and $|psi^{(-)}rangle$ states of $61.6pm2.3%$ and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to $0.95 pm 0.01$ and post-selected photon indistinguishabilities of up to $0.93 pm 0.01$, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations as well as time resolved Hong-Ou-Mandel interferences facilitate innovative methods that determine quantities such as photon extraction and excitation efficiencies as well as pure dephasing directly - opposed to commonly employed indirect techniques.
Quantum mechanical phase factors can be related to dynamical effects or to the geometrical properties of a trajectory in a given space - either parameter space or Hilbert space. Here, we experimentally investigate a quantum mechanical phase factor that reflects the topology of the SO(3) group: since rotations by $pi$ around antiparallel axes are identical, this space is doubly connected. Using pairs of nuclear spins in a maximally entangled state, we subject one of the spins to a cyclic evolution. If the corresponding trajectory in SO(3) can be smoothly deformed to a point, the quantum state at the end of the trajectory is identical to the initial state. For all other trajectories the quantum state changes sign.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا