Do you want to publish a course? Click here

Quantum toroidal $mathfrak{gl}_1$ algebra : plane partitions

154   0   0.0 ( 0 )
 Added by Evgeny Mukhin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal characters. As an application we obtain a Gelfand-Zetlin type basis for a class of irreducible lowest weight $gl_infty$-modules.



rate research

Read More

146 - B. Feigin , M. Jimbo , 2017
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${mathfrak {gl}}_n$ algebra ${mathcal E}_n(q_1,q_2,q_3)$ to the quantum affine algebra $U_qwidehat{mathfrak {gl}}_n$ at level $kappa$ completed with respect to the homogeneous grading, where $q_2=q^2$ and $q_3^n=kappa^2$. We discuss ${mathcal E}_n(q_1,q_2,q_3)$ evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin type subalgebra of a completion of ${mathcal E}_n(q_1,q_2,q_3)$, which describes a deformation of the coset theory $widehat{mathfrak {gl}}_n/widehat{mathfrak {gl}}_{n-1}$.
125 - B. Feigin , M. Jimbo , 2018
On a Fock space constructed from $mn$ free bosons and lattice ${Bbb {Z}}^{mn}$, we give a level $n$ action of the quantum toroidal algebra $mathscr {E}_m$ associated to $mathfrak{gl}_m$, together with a level $m$ action of the quantum toroidal algebra ${mathscr E}_n$ associated to ${mathfrak {gl}}_n$. We prove that the $mathscr {E}_m$ transfer matrices commute with the $mathscr {E}_n$ transfer matrices after an appropriate identification of parameters.
336 - B. Feigin , M. Jimbo , T. Miwa 2013
We construct an analog of the subalgebra $Ugl(n)otimes Ugl(m)$ of $Ugl(m+n)$ in the setting of quantum toroidal algebras and study the restrictions of various representations to this subalgebra.
163 - B. Feigin , M. Jimbo , T. Miwa 2015
We establish the method of Bethe ansatz for the XXZ type model obtained from the R-matrix associated to quantum toroidal gl(1). We do that by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from a simple multiplication operator by taking an appropriate quotient. We expect this approach to be applicable to a wide variety of models.
171 - B. Feigin , M. Jimbo , T. Miwa 2016
We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of `finite type modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules $V$ the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا