We construct an analog of the subalgebra $Ugl(n)otimes Ugl(m)$ of $Ugl(m+n)$ in the setting of quantum toroidal algebras and study the restrictions of various representations to this subalgebra.
We establish the method of Bethe ansatz for the XXZ type model obtained from the R-matrix associated to quantum toroidal gl(1). We do that by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from a simple multiplication operator by taking an appropriate quotient. We expect this approach to be applicable to a wide variety of models.
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${mathfrak {gl}}_n$ algebra ${mathcal E}_n(q_1,q_2,q_3)$ to the quantum affine algebra $U_qwidehat{mathfrak {gl}}_n$ at level $kappa$ completed with respect to the homogeneous grading, where $q_2=q^2$ and $q_3^n=kappa^2$. We discuss ${mathcal E}_n(q_1,q_2,q_3)$ evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin type subalgebra of a completion of ${mathcal E}_n(q_1,q_2,q_3)$, which describes a deformation of the coset theory $widehat{mathfrak {gl}}_n/widehat{mathfrak {gl}}_{n-1}$.
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal characters. As an application we obtain a Gelfand-Zetlin type basis for a class of irreducible lowest weight $gl_infty$-modules.
We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of `finite type modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules $V$ the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.
We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the (gl(m),gl(n)) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine sl(2).