Do you want to publish a course? Click here

Density waves in debris discs and galactic nuclei

148   0   0.0 ( 0 )
 Added by Mir Abbas Jalali
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the linear perturbations of collisionless near-Keplerian discs. Such systems are models for debris discs around stars and the stellar discs surrounding supermassive black holes at the centres of galaxies. Using a finite-element method, we solve the linearized collisionless Boltzmann equation and Poissons equation for a wide range of disc masses and rms orbital eccentricities to obtain the eigenfrequencies and shapes of normal modes. We find that these discs can support large-scale `slow modes, in which the frequency is proportional to the disc mass. Slow modes are present for arbitrarily small disc mass so long as the self-gravity of the disc is the dominant source of apsidal precession. We find that slow modes are of two general types: parent modes and hybrid child modes, the latter arising from resonant interactions between parent modes and singular van Kampen modes. The most prominent slow modes have azimuthal wavenumbers $m=1$ and $m=2$. We illustrate how slow modes in debris discs are excited during a fly-by of a neighbouring star. Many of the non-axisymmetric features seen in debris discs (clumps, eccentricity, spiral waves) that are commonly attributed to planets could instead arise from slow modes; the two hypotheses can be distinguished by long-term measurements of the pattern speed of the features.



rate research

Read More

We aim to see whether debris belts evolving in between two stars may be impacted by the presence of the companion and whether this leaves any detectable signature that could be observed with current or future instruments. We consider a circumprimary parent body (PB) planetesimal belt that is placed just inside the stability limit between the 2 stars and use the DyCoSS code to follow the coupled dynamical and collisional evolution of the dust produced by this PB belt. We explore several free parameters such as the belts mass or the binarys mass ratio and orbit. We use the GraTeR package to produce 2-D luminosity maps and system-integrated SEDs. We confirm a preliminary result obtained by earlier DyCoSS studies, which is that the coupled effect of collisional activity, binary perturbations and stellar radiation pressure maintains a halo of small grains in the dynamically unstable region between the 2 stars. In addition, several spatial structures are identified, notably a single spiral arm stretching all the way from the PB belt to the companion star. We also identify a fainter and more compact disc around the secondary star, which is non-native and feeds off small grains from the unstable halo. Both the halo, spiral arm and secondary disc should be detectable on resolved images by instruments with capacities similar to SPHERE. The system as a whole is depleted in small grains when compared to a companion-free case. This depletion leaves an imprint on the systems integrated SED, which appears colder than for the same parent body belt around a single star. This new finding could explain why the SED-derived location $r_{disc}$ of some unresolved discs-in-binaries places their primary belt in the dynamically forbidden region between the 2 stars: this apparent paradox could indeed be due to overestimating $r_{disc}$ when using empirical prescriptions valid for a single star case
Warm coronae, thick ($tau_{mathrm{T}}approx 10$-$20$, where $tau_{mathrm{T}}$ is the Thomson depth) Comptonizing regions with temperatures of $sim 1$ keV, are proposed to exist at the surfaces of accretion discs in active galactic nuclei (AGNs). By combining with the reflection spectrum, warm coronae may be responsible for producing the smooth soft excess seen in AGN X-ray spectra. This paper studies how a warm corona must adjust in order to sustain the soft excess through large changes in the AGN flux. Spectra from one-dimensional constant density and hydrostatic warm coronae models are calculated assuming the illuminating hard X-ray power-law, gas density, Thomson depth and coronal heating strength vary in response to changes in the accretion rate. We identify models that produce warm coronae with temperatures between $0.3$ and $1.1$ keV, and measure the photon indices and emitted fluxes in the $0.5$-$2$ keV and $2$-$10$ keV bands. Correlations and anti-correlations between these quantities depend on the evolution and structure of the warm corona. Tracing the path that an AGN follows through these correlations will constrain how warm coronae are heated and connected to the accretion disc. Variations in the density structure and coronal heating strength of warm coronae will lead to a variety of soft excess strengths and shapes in AGNs. A larger accretion rate will, on average, lead to a warm corona that produces a stronger soft excess, consistent with observations of local Seyfert galaxies.
277 - J. S. Greaves , M. C. Wyatt 2010
Numerous nearby FGK dwarfs possess discs of debris generated by collisions among comets. Here we fit the levels of dusty excess observed by Spitzer at 70$umu$m and show that they form a rather smooth distribution. Taking into account the transition of the dust removal process from collisional to Poynting-Robertson drag, all the stars may be empirically fitted by a single population with many low-excess members. Within this ensemble, the Kuiper Belt is inferred to be such a low-dust example, among the last 10% of stars, with a small cometary population. Analogue systems hosting gas giant planets and a modest comet belt should occur for only a few per cent of Sun-like stars, and so terrestrial planets with a comparable cometary impact rate to the Earth may be uncommon. The nearest such analogue system presently known is HD154345 at 18pc, but accounting for survey completeness, a closer example should lie at around 10pc.
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical properties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.
We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either H$_{alpha}$, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the $beta$ Pictoris system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا