Do you want to publish a course? Click here

Modelling the impact of human activity on nitrogen dioxide concentrations in Europe

204   0   0.0 ( 0 )
 Added by Gavin Shaddick
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

Ambient concentrations of many pollutants are associated with emissions due to human activity, such as road transport and other combustion sources. In this paper we consider air pollution as a multi--level phenomenon within a Bayesian hierarchical model. We examine different scales of variation in pollution concentrations ranging from large scale transboundary effects to more localised effects which are directly related to human activity. Specifically, in the first stage of the model, we isolate underlying patterns in pollution concentrations due to global factors such as underlying climate and topography, which are modelled together with spatial structure. At this stage measurements from monitoring sites located within rural areas are used which, as far as possible, are chosen to reflect background concentrations. Having isolated these global effects, in the second stage we assess the effects of human activity on pollution in urban areas. The proposed model was applied to concentrations of nitrogen dioxide measured throughout the EU for which significant increases are found to be associated with human activity in urban areas. The approach proposed here provides valuable information that could be used in performing health impact assessments and to inform policy.



rate research

Read More

Social-distancing to combat the COVID-19 pandemic has led to widespread reductions in air pollutant emissions. Quantifying these changes requires a business as usual counterfactual that accounts for the synoptic and seasonal variability of air pollutants. We use a machine learning algorithm driven by information from the NASA GEOS-CF model to assess changes in nitrogen dioxide (NO$_{2}$) and ozone (O$_{3}$) at 5,756 observation sites in 46 countries from January through June 2020. Reductions in NO$_{2}$ correlate with timing and intensity of COVID-19 restrictions, ranging from 60% in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, Taipei). On average, NO$_{2}$ concentrations were 18% lower than business as usual from February 2020 onward. China experienced the earliest and steepest decline, but concentrations since April have mostly recovered and remained within 5% to the business as usual estimate. NO$_{2}$ reductions in Europe and the US have been more gradual with a halting recovery starting in late March. We estimate that the global NO$_{x}$ (NO+NO$_{2}$) emission reduction during the first 6 months of 2020 amounted to 2.9 TgN, equivalent to 5.1% of the annual anthropogenic total. The response of surface O$_{3}$ is complicated by competing influences of non-linear atmospheric chemistry. While surface O$_{3}$ increased by up to 50% in some locations, we find the overall net impact on daily average O$_{3}$ between February - June 2020 to be small. However, our analysis indicates a flattening of the O$_{3}$ diurnal cycle with an increase in night time ozone due to reduced titration and a decrease in daytime ozone, reflecting a reduction in photochemical production. The O$_{3}$ response is dependent on season, time scale, and environment, with declines in surface O$_{3}$ forecasted if NO$_{x}$ emission reductions continue.
Nitrogen dioxide (NO$_2$) is a primary constituent of traffic-related air pollution and has well established harmful environmental and human-health impacts. Knowledge of the spatiotemporal distribution of NO$_2$ is critical for exposure and risk assessment. A common approach for assessing air pollution exposure is linear regression involving spatially referenced covariates, known as land-use regression (LUR). We develop a scalable approach for simultaneous variable selection and estimation of LUR models with spatiotemporally correlated errors, by combining a general-Vecchia Gaussian process approximation with a penalty on the LUR coefficients. In comparisons to existing methods using simulated data, our approach resulted in higher model-selection specificity and sensitivity and in better prediction in terms of calibration and sharpness, for a wide range of relevant settings. In our spatiotemporal analysis of daily, US-wide, ground-level NO$_2$ data, our approach was more accurate, and produced a sparser and more interpretable model. Our daily predictions elucidate spatiotemporal patterns of NO$_2$ concentrations across the United States, including significant variations between cities and intra-urban variation. Thus, our predictions will be useful for epidemiological and risk-assessment studies seeking daily, national-scale predictions, and they can be used in acute-outcome health-risk assessments.
A spatiotemporal calibration and resolution refinement model was fitted to calibrate nitrogen dioxide (NO$_2$) concentration estimates from the Community Multiscale Air Quality (CMAQ) model, using two sources of observed data on NO$_2$ that differed in their spatial and temporal resolutions. To refine the spatial resolution of the CMAQ model estimates, we leveraged information using additional local covariates including total traffic volume within 2 km, population density, elevation, and land use characteristics. Predictions from this model greatly improved the bias in the CMAQ estimates, as observed by the much lower mean squared error (MSE) at the NO$_2$ monitor sites. The final model was used to predict the daily concentration of ambient NO$_2$ over the entire state of Connecticut on a grid with pixels of size 300 x 300 m. A comparison of the prediction map with a similar map for the CMAQ estimates showed marked improvement in the spatial resolution. The effect of local covariates was evident in the finer spatial resolution map, where the contribution of traffic on major highways to ambient NO$_2$ concentration stands out. An animation was also provided to show the change in the concentration of ambient NO$_2$ over space and time for 1994 and 1995.
As the COVID-19 virus spread over the world, governments restricted mobility to slow transmission. Public health measures had different intensities across European countries but all had significant impact on peoples daily lives and economic activities, causing a drop of CO2 emissions of about 10% for the whole year 2020. Here, we analyze changes in natural gas use in the industry and built environment sectors during the first half of year 2020 with daily gas flows data from pipeline and storage facilities in Europe. We find that reductions of industrial gas use reflect decreases in industrial production across most countries. Surprisingly, natural gas use in buildings also decreased despite most people being confined at home and cold spells in March 2020. Those reductions that we attribute to the impacts of COVID-19 remain of comparable magnitude to previous variations induced by cold or warm climate anomalies in the cold season. We conclude that climate variations played a larger role than COVID-19 induced stay-home orders in natural gas consumption across Europe.
Forest fires are the outcome of a complex interaction between environmental factors, topography and socioeconomic factors (Bedia et al, 2014). Therefore, understand causality and early prediction are crucial elements for controlling such phenomenon and saving lives.The aim of this study is to build spatio-temporal model to understand causality of forest fires in Europe, at NUTS2 level between 2012 and 2016, using environmental and socioeconomic variables.We have considered a disease mapping approach, commonly used in small area studies to assess thespatial pattern and to identify areas characterised by unusually high or low relative risk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا