Do you want to publish a course? Click here

Impact of lockdowns and winter temperatures on natural gas consumption in Europe

96   0   0.0 ( 0 )
 Added by Zhu Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the COVID-19 virus spread over the world, governments restricted mobility to slow transmission. Public health measures had different intensities across European countries but all had significant impact on peoples daily lives and economic activities, causing a drop of CO2 emissions of about 10% for the whole year 2020. Here, we analyze changes in natural gas use in the industry and built environment sectors during the first half of year 2020 with daily gas flows data from pipeline and storage facilities in Europe. We find that reductions of industrial gas use reflect decreases in industrial production across most countries. Surprisingly, natural gas use in buildings also decreased despite most people being confined at home and cold spells in March 2020. Those reductions that we attribute to the impacts of COVID-19 remain of comparable magnitude to previous variations induced by cold or warm climate anomalies in the cold season. We conclude that climate variations played a larger role than COVID-19 induced stay-home orders in natural gas consumption across Europe.

rate research

Read More

Based on data from the Japan Sea and the North Sea the occurrence of rogue waves is analyzed by a scale dependent stochastic approach, which interlinks fluctuations of waves for different spacings. With this approach we are able to determine a stochastic cascade process, which provides information of the general multipoint statistics. Furthermore the evolution of single trajectories in scale, which characterize wave height fluctuations in the surroundings of a chosen location, can be determined. The explicit knowledge of the stochastic process enables to assign entropy values to all wave events. We show that for these entropies the integral fluctuation theorem, a basic law of non-equilibrium thermodynamics, is valid. This implies that positive and negative entropy events must occur. Extreme events like rogue waves are characterized as negative entropy events. The statistics of these entropy fluctuations changes with the wave state, thus for the Japan Sea the statistics of the entropies has a more pronounced tail for negative entropy values, indicating a higher probability of rogue waves.
Current global environmental challenges require vigorous and diverse actions in the energy sector. One solution that has recently attracted interest consists in harnessing high-quality variable renewable energy resources in remote locations, while using transmission links to transport the power to end users. In this context, a comparison of western European and Greenland wind regimes is proposed. By leveraging a regional atmospheric model specifically designed to accurately capture polar phenomena, local climatic features of southern Greenland are identified to be particularly conducive to extensive renewable electricity generation from wind. A methodology to assess how connecting remote locations to major demand centres would benefit the latter from a resource availability standpoint is introduced and applied to the aforementioned Europe-Greenland case study, showing superior and complementary wind generation potential in the considered region of Greenland with respect to selected European sites.
During a winter thunderstorm on 2017 November 24, a strong burst of gamma rays with energies up to $sim$10~MeV was detected coincident with a lightning discharge, by scintillation detectors installed at Kashiwazaki-Kariwa Nuclear Power Station at sea level in Japan. The burst had a sub-second duration, which is suggestive of photoneutron productions. The leading part of the burst was resolved into four intense gamma-ray bunches, each coincident with a low-frequency radio pulse. These bunches were separated by 0.7--1.5~ms, with a duration of $ll$1~ms each. Thus, the present burst may be considered as a ``downward terrestrial gamma-ray flash (TGF), which is analogous to up-going TGFs observed from space. Although the scintillation detectors were heavily saturated by these bunches, the total dose associated with them was successfully measured by ionization chambers, employed by nine monitoring posts surrounding the power plant. From this information and Monte Carlo simulations, the present downward TGF is suggested to have taken place at an altitude of 2500 $pm$ 500~m, involving $8^{+8}_{-4} times 10^{18}$ avalanche electrons with energies above 1~MeV. This number is comparable to those in up-going TGFs.
In 2015 the Gamma-Ray Observation of Winter Thunderstorms (GROWTH) collaboration launched a mapping observation campaign for high-energy atmospheric phenomena related to thunderstorms and lightning discharges. This campaign has developed a detection network of gamma rays with up to 10 radiation monitors installed in Kanazawa and Komatsu cities, Ishikawa Prefecture, Japan, where low-charge-center winter thunderstorms frequently occur. During four winter seasons from October 2016 to April 2020, in total 70 gamma-ray glows, minute-lasting bursts of gamma rays originating from thunderclouds, were detected. Their average duration is 58.9 sec. Among the detected events, 77% were observed in nighttime. The gamma-ray glows can be classified into temporally-symmetric, temporally-asymmetric, and lightning-terminated types based on their count-rate histories. An averaged energy spectrum of the gamma-ray glows is well fitted with a power-law function with an exponential cutoff, whose photon index, cutoff energy, and flux are $0.613pm0.009$, $4.68pm0.04$ MeV, and $(1.013pm0.003)times10^{-5}$ erg cm$^{-2}$ s$^{-1}$ (0.2-20.0MeV), respectively. The present paper provides the first catalog of gamma-ray glows and their statistical analysis detected during winter thunderstorms in the Kanazawa and Komatsu areas.
74 - Markus D. Foote 2021
Matched filter (MF) techniques have been widely used for retrieval of greenhouse gas enhancements (enh.) from imaging spectroscopy datasets. While multiple algorithmic techniques and refinements have been proposed, the greenhouse gas target spectrum used for concentration enh. estimation has remained largely unaltered since the introduction of quantitative MF retrievals. The magnitude of retrieved methane and carbon dioxide enh., and thereby integrated mass enh. (IME) and estimated flux of point-source emitters, is heavily dependent on this target spectrum. Current standard use of molecular absorption coefficients to create unit enh. target spectra does not account for absorption by background concentrations of greenhouse gases, solar and sensor geometry, or atmospheric water vapor absorption. We introduce geometric and atmospheric parameters into the generation of scene-specific (SS) unit enh. spectra to provide target spectra that are compatible with all greenhouse gas retrieval MF techniques. For methane plumes, IME resulting from use of standard, generic enh. spectra varied from -22 to +28.7% compared to SS enh. spectra. Due to differences in spectral shape between the generic and SS enh. spectra, differences in methane plume IME were linked to surface spectral characteristics in addition to geometric and atmospheric parameters. IME differences for carbon dioxide plumes, with generic enh. spectra producing integrated mass enh. -76.1 to -48.1% compared to SS enh. spectra. Fluxes calculated from these integrated enh. would vary by the same %s, assuming equivalent wind conditions. Methane and carbon dioxide IME were most sensitive to changes in solar zenith angle and ground elevation. SS target spectra can improve confidence in greenhouse gas retrievals and flux estimates across collections of scenes with diverse geometric and atmospheric conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا