Do you want to publish a course? Click here

The dynamical state of galaxy groups and their luminosity content

120   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the dependence of the luminosity function of galaxies in groups (LF) on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the SDSS Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or Non-Gaussian velocity distributions, i.e., whether they are relaxed or not. For these two subsamples, we compute the $^{0.1}r-$band LF as a function of group virial mass and group total luminosity. For massive groups, ${mathcal M}>5 times 10^{13} M_{odot} h^{-1}$, we find statistically significant differences between the LF of the two subsamples: the LF of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude ($sim0.3$ mag) and a steeper faint end slope ($sim0.25$). We detect a similar effect when comparing the LF of bright ($M^{group}_{^{0.1}r}-5log(h)<-23.5$) Gaussian and Non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related with the luminosity of its galaxy members.



rate research

Read More

We find that the fraction of early-type galaxies in poor groups (containing from 4 to 10 members) is a weakly increasing function of the number of the group members and is about two times higher than in a sample of isolated galaxies. We also find that the group velocity dispersion increases weakly with the fraction of early-type galaxies. Early-type galaxies in poor groups are brighter in the near-infrared with respect to isolated ones by 0.75 mags (in K) and to a lesser degree (by 0.5 mags) also in the blue. We also find early-type galaxies in groups to be redder than those in the field. These findings suggest that the formation history for early-type galaxies in overdense regions is different from that of in underdense regions, and that their formation in groups is triggered by merging processes.
Galaxy groups host the majority of matter and more than half of all the galaxies in the Universe. Their hot ($10^7$ K), X-ray emitting intra-group medium (IGrM) reveals emission lines typical of many elements synthesized by stars and supernovae. Because their gravitational potentials are shallower than those of rich galaxy clusters, groups are ideal targets for studying, through X-ray observations, feedback effects, which leave important marks on their gas and metal contents. Here, we review the history and present status of the chemical abundances in the IGrM probed by X-ray spectroscopy. We discuss the limitations of our current knowledge, in particular due to uncertainties in the modeling of the Fe-L shell by plasma codes, and coverage of the volume beyond the central region. We further summarize the constraints on the abundance pattern at the group mass scale and the insight it provides to the history of chemical enrichment. Parallel to the observational efforts, we review the progress made by both cosmological hydrodynamical simulations and controlled high-resolution 3D simulations to reproduce the radial distribution of metals in the IGrM, the dependence on system mass from group to cluster scales, and the role of AGN and SN feedback in producing the observed phenomenology. Finally, we highlight future prospects in this field, where progress will be driven both by a much richer sample of X-ray emitting groups identified with eROSITA, and by a revolution in the study of X-ray spectra expected from micro-calorimeters onboard XRISM and ATHENA.
105 - A.Kravtsov 2009
Groups and clusters of galaxies occupy a special position in the hierarchy of large-scale cosmic structures because they are the largest and the most massive (from ~10^13 Msun to over 10^15 Msun) objects in the universe that have had time to undergo gravitational collapse. The large masses of clusters imply that their contents have been accreted from regions of ~8-40 comoving Mpc in size and should thus be representative of the mean matter content of the universe. During the next decade sensitive multi-wavelength observations should be able to map the radial distributions of all main mass components (stars, cold, warm, and hot gas and total mass) at z<~ 1 out to the virial radius. At the same time, comparative studies of real and simulated cluster samples sould allow us to use clusters as veritable astrophysical laboratories for studying galaxy formation, as well as testing our theoretical models of structure formation and underlying assumptions about fundamental physics governing the universe.
Matter distribution around clusters is highly anisotropic from their being the nodes of the cosmic web. Clusters shape and the number of filaments they are connected to, i.e., their connectivity, should reflect their level of anisotropic matter distribution and must be, in principle, related to their physical properties. We investigate the influence of the dynamical state and the formation history on both the morphology and local connectivity of about 2400 groups and clusters of galaxies from the large hydrodynamical simulation IllustrisTNG at z=0. We find that the mass of groups and clusters mainly influences the geometry of the matter distribution: massive halos are significantly more elliptical, and more connected to the cosmic web than low-mass ones. Beyond the mass-driven effect, ellipticity and connectivity are correlated and are imprints of the growth rate of groups and clusters. Both anisotropy measures appear to trace different dynamical states, such that unrelaxed groups and clusters are more elliptical and more connected than relaxed ones. This relation between matter anisotropies and dynamical state is the sign of different accretion histories. Relaxed groups and clusters are mostly formed long time ago, and slowly accreting matter at the present time. They are rather spherical and weakly connected to their environment, mostly because they had enough time to relax and, hence, lost the connection with their preferential directions of accretion and merging. In contrast, late-formed unrelaxed objects are highly anisotropic with large connectivities and ellipticities. These groups and clusters are in formation phase and must be strongly affected by the infalling of materials from filaments.
We have initiated a programme to study the physical/dynamical state of gas in galaxy clusters and the impact of the cluster environment on gaseous halos of individual galaxies using X-ray imaging and UV absorption line spectroscopy of background QSOs. Here we report results from the analysis Chandra and XMM-Newton archival data of five galaxy clusters with such QSOs, one of which has an archival UV spectrum. We characterize the gravitational masses and dynamical states, as well as the hot intracluster medium (ICM) properties of these clusters. Most clusters are dynamically disturbed clusters based on the X-ray morphology parameters, the X-ray temperature profiles, the large offset between X-ray peak and brightest cluster galaxy (BCG). The baryon contents in the hot ICM and stars of these clusters within $r_{500}$ are lower than the values expected from the gravitational masses, according to the standard cosmology. We also estimate column densities of the hot ICM along the sightlines toward the background QSOs as well as place upper limits on the warm-hot phase for the one sightline with existing UV observations. These column densities, compared with those of the warm and warm-hot ICM to be measured with UV absorption line spectroscopy, will enable us to probe the relationship among various gaseous phases and their connection to the heating/cooling and dynamical processes of the clusters. Furthermore, our analysis of the archival QSO spectrum probing one cluster underscores the need for high quality, targeted UV observations to robustly constrain the 10$^{5-6}$ K gas phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا