Do you want to publish a course? Click here

Morphological and Luminosity Content of Poor Galaxy Groups

80   0   0.0 ( 0 )
 Added by Manolis Plionis Dr.
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find that the fraction of early-type galaxies in poor groups (containing from 4 to 10 members) is a weakly increasing function of the number of the group members and is about two times higher than in a sample of isolated galaxies. We also find that the group velocity dispersion increases weakly with the fraction of early-type galaxies. Early-type galaxies in poor groups are brighter in the near-infrared with respect to isolated ones by 0.75 mags (in K) and to a lesser degree (by 0.5 mags) also in the blue. We also find early-type galaxies in groups to be redder than those in the field. These findings suggest that the formation history for early-type galaxies in overdense regions is different from that of in underdense regions, and that their formation in groups is triggered by merging processes.



rate research

Read More

We analyse the dependence of the luminosity function of galaxies in groups (LF) on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the SDSS Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or Non-Gaussian velocity distributions, i.e., whether they are relaxed or not. For these two subsamples, we compute the $^{0.1}r-$band LF as a function of group virial mass and group total luminosity. For massive groups, ${mathcal M}>5 times 10^{13} M_{odot} h^{-1}$, we find statistically significant differences between the LF of the two subsamples: the LF of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude ($sim0.3$ mag) and a steeper faint end slope ($sim0.25$). We detect a similar effect when comparing the LF of bright ($M^{group}_{^{0.1}r}-5log(h)<-23.5$) Gaussian and Non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related with the luminosity of its galaxy members.
We obtain R-band photometry for galaxies in six nearby poor groups for which we have spectroscopic data, including 328 new galaxy velocities. For the five groups with luminous X-ray halos, the composite group galaxy luminosity function (GLF) is fit adequately by a Schechter function with Mstar = -21.6 +/- 0.4 + 5log h and alpha = -1.3 +/- 0.1. We also find that (1) the ratio of dwarfs to giants is significantly larger for the five groups with luminous X-ray halos than for the one marginally X-ray detected group, (2) the composite GLF for the luminous X-ray groups is consistent in shape with that for rich clusters, (3) the composite group GLF rises more steeply at the faint end than that of the field, (4) the shape difference between the field and composite group GLFs results mostly from the population of non-emission line galaxies, whose dwarf-to-giant ratio is larger in the denser group environment than in the field, and (5) the non-emission line dwarfs are more concentrated about the group center than the non-emission line giants. This last result indicates that the dwarfs and giants occupy different orbits (i.e., have not mixed completely) and suggests that the populations formed at a different times. Our results show that the shape of the GLF varies with environment and that this variation is due primarily to an increase in the dwarf-to-giant ratio of quiescent galaxies in higher density regions, at least up to the densities characteristic of X-ray luminous poor groups. This behavior suggests that, in some environments, dwarfs are more biased than giants with respect to dark matter. This trend conflicts with the prediction of standard biased galaxy formation models. (Abridged)
332 - Michael L. Balogh 2006
We have obtained near-infrared imaging of 58 galaxy groups, in the redshift range 0.1<z<0.6, from the William Herschel Telescope and from the Spitzer IRAC data archive. The groups are selected from the CNOC2 redshift survey, with additional spectroscopy from the Baade telescope (Magellan). Our group samples are statistically complete to K(Vega}=17.7 (INGRID) and [3.6](AB)=19.9 (IRAC). From these data we construct near-infrared luminosity functions, for groups in bins of velocity dispersion, up to 800 km/s, and redshift. The total amount of near-infrared luminosity per group is compared with the dynamical mass, estimated from the velocity dispersion, to compute the mass-to-light ratio, M/Lk. We find that the M/Lk values in these groups are in good agreement with those of their statistical descendants at z=0, with no evidence for evolution beyond that expected for a passively evolving population. There is a trend of M/Lk with group mass, which increases from M/Lk~10 for groups with sigma<250 km/s to M/Lk~100 for sigma=425-800 km/s. This trend is weaker, but still present, if we estimate the total mass from weak lensing measurements. In terms of stellar mass, stars make up ~2 per cent of the mass in the smallest groups, and ~1 per cent in the most massive groups. We also use the near-infrared data to consider the correlations between stellar populations and stellar masses, for group and field galaxies at 0.1<z<0.6. We find that fewer group galaxies show strong [OII] emission compared with field galaxies of the same stellar mass and at the same redshift. We conclude that most of the stellar mass in these groups was already in place by z~0.4, with little environment-driven evolution to the present day.
373 - Kim-Vy H. Tran 2000
(Abridged) We determine the quantitative morphology and star formation properties of galaxies in six nearby X-ray detected, poor groups using multi-object spectroscopy and wide-field R imaging. We measure structural parameters for each galaxy by fitting a PSF-convolved, two component model to their surface brightness profiles. To compare directly the samples, we fade, smooth, and rebin each galaxy image so that we effectively observe each galaxy at the same redshift (9000 km/s) and physical resolution (0.87h^(-1) kpc). We compare results for the groups to a sample of field galaxies. We find that: 1) Galaxies spanning a wide range in morphological type and luminosity are well-fit by a de Vaucouleurs bulge with exponential disk profile. 2) Morphologically classifying these nearby group galaxies by their bulge fraction (B/T) is fairly robust on average, even when their redshift has increased by up to a factor of four and the effective resolution of the images is degraded by up to a factor of five. 3) The fraction of bulge-dominated systems in these groups is higher than in the field (~50% vs. ~20%). 4) The fraction of bulge-dominated systems in groups decreases with increasing radius, similar to the morphology-radius (~density) relation observed in galaxy clusters. 5) Current star formation in group galaxies is correlated with significant morphological asymmetry for disk-dominated systems (B/T<0.4). 6) The group galaxies that are most disk-dominated (B/T<0.2) are less star forming and asymmetric on average than their counterparts in the field.
50 - O. Ilbert , S. Lauger , L. Tresse 2006
We have computed the evolution of the rest-frame B-band luminosity function (LF) for bulge and disk-dominated galaxies since z=1.2. We use a sample of 605 spectroscopic redshifts with I_{AB}<24 in the Chandra Deep Field South from the VIMOS-VLT Deep Survey, 3555 galaxies with photometric redshifts from the COMBO-17 multi-color data, coupled with multi-color HST/ACS images from the Great Observatories Origin Deep Survey. We split the sample in bulge- and disk-dominated populations on the basis of asymmetry and concentration parameters measured in the rest-frame B-band. We find that at z=0.4-0.8, the LF slope is significantly steeper for the disk-dominated population (alpha=-1.19 pm 0.07) compared to the bulge-dominated population (alpha=-0.53 pm 0.13). The LF of the bulge-dominated population is composed of two distinct populations separated in rest-frame color: 68% of red (B-I)_{AB}>0.9 and bright galaxies showing a strongly decreasing LF slope alpha=+0.55 pm 0.21, and 32% of blue (B-I)_{AB}<0.9 and more compact galaxies which populate the LF faint-end. We observe that red bulge-dominated galaxies are already well in place at z~1, but the volume density of this population is increasing by a factor 2.7 between z~1 and z~0.6. It may be related to the building-up of massive elliptical galaxies in the hierarchical scenario. In addition, we observe that the blue bulge-dominated population is dimming by 0.7 magnitude between z~1 and z~0.6. Galaxies in this faint and more compact population could possibly be the progenitors of the local dwarf spheroidal galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا