We report on the emergence of spontaneous coherence in a gas of indirect excitons in an electrostatic trap. At low temperatures, the exciton coherence length becomes much larger than the thermal de Broglie wavelength and reaches the size of the exciton cloud in the trap.
We present theoretical studies of condensation of indirect excitons in a trap. Our model quantifies the effect of screening of the trap potential by indirect excitons on exciton condensation. The theoretical studies are applied to a system of indirect excitons in a GaAs/AlGaAs coupled quantum well structure in a diamond-shaped electrostatic trap where exciton condensation was studied in earlier experiments. The estimated condensation temperature of the indirect excitons in the trap reaches hundreds of milliKelvin.
We study the time coherence of the photoluminescence radiated by spatially indirect excitons confined in a 10 $mu$m electrostatic trap. Above a critical temperature of 1 Kelvin, we show that the photoluminescence has a homogeneous spectral width of about 500 $mu$eV which weakly varies with the exciton density. By contrast, the spectral width reduces by two-fold below the critical temperature and for experimental parameters at which excitons undergo a gray Bose-Einstein condensation. In this regime, we find evidence showing that the excitons temporal coherence is limited by their interaction with a low-concentration of residual excess charges, leading to a minimum photoluminescence spectral width of around 300 $mu$eV.
We address theoretically the puzzling similarity observed in the thermodynamic behaviour of independent clouds of cold dipolar excitons in coupled semiconductor quantum wells. We argue that the condensation of self-trapped exciton gas starts at the same critical temperature in all traps due to the specific scaling rule. As a consequence of the reduced dimensionality of the system, the scaling parameters appear to be insensitive to disorder.
We report on the kinetics of a low-temperature gas of indirect excitons in the optically-induced exciton trap. The excitons in the region of laser excitation are found to rapidly -- within 4 ns -- cool to the lattice temperature T = 1.4 K, while the excitons at the trap center are found to be cold -- essentially at the lattice temperature -- even during the excitation pulse. The loading time of excitons to the trap center is found to be about 40 ns, longer than the cooling time yet shorter than the lifetime of the indirect excitons. The observed time hierarchy is favorable for creating a dense and cold exciton gas in optically-induced traps and for in situ control of the gas by varying the excitation profile in space and time before the excitons recombine.
Superpositions of rotational states in polar molecules induce strong, long-range dipolar interactions. Here we extend the rotational coherence by nearly one order of magnitude to 8.7(6) ms in a dilute gas of polar $^{23}$Na$^{40}$K molecules in an optical trap. We demonstrate spin-decoupled magic trapping, which cancels first-order and reduces second-order differential light shifts. The latter is achieved with a dc electric field that decouples nuclear spin, rotation and trapping light field. We observe density-dependent coherence times, which can be explained by dipolar interactions in the bulk gas.