A one-component inner function $Theta$ is an inner function whose level set $$Omega_{Theta}(varepsilon)={zin mathbb{D}:|Theta(z)|<varepsilon}$$ is connected for some $varepsilonin (0,1)$. We give a sufficient condition for a Blaschke product with zeros in a Stolz domain to be a one-component inner function. Moreover, a sufficient condition is obtained in the case of atomic singular inner functions. We study also derivatives of one-component inner functions in the Hardy and Bergman spaces. For instance, it is shown that, for $0<p<infty$, the derivative of a one-component inner function $Theta$ is a member of the Hardy space $H^p$ if and only if $Theta$ belongs to the Bergman space $A_{p-1}^p$, or equivalently $Thetain A_{p-1}^{2p}$.
In this paper, following Grothendieck {it Esquisse dun programme}, which was motivated by Belyis work, we study some properties of surfaces $X$ which are triangulated by (possibly ideal) isometric equilateral triangles of one of the spherical, euclidean or hyperbolic geometries. These surfaces have a natural Riemannian metric with conic singularities. In the euclidean case we analyze the closed geodesics and their lengths. Such surfaces can be given the structure of a Riemann surface which, considered as algebraic curves, are defined over $bar{mathbb{Q}}$ by a theorem of Belyi. They have been studied by many authors of course. Here we define the notion of connected sum of two Belyi functions and give some concrete examples. In the particular case when $X$ is a torus, the triangulation leads to an elliptic curve and we define the notion of a peel obtained from the triangulation (which is a metaphor of an orange peel) and relate this peel with the modulus $tau$ of the elliptic curve. Many fascinating questions arise regarding the modularity of the elliptic curve and the geometric aspects of the Taniyama-Shimura-Weil theory.
Let $E$ be a continuum in the closed unit disk $|z|le 1$ of the complex $z$-plane which divides the open disk $|z| < 1$ into $nge 2$ pairwise non-intersecting simply connected domains $D_k,$ such that each of the domains $D_k$ contains some point $a_k$ on a prescribed circle $|z| = rho, 0 <rho <1, k=1,...,n,. $ It is shown that for some increasing function $Psi,$ independent of $E$ and the choice of the points $a_k,$ the mean value of the harmonic measures $$ Psi^{-1}[ frac{1}{n} sum_{k=1}^{k} Psi(omega(a_k,E, D_k))] $$ is greater than or equal to the harmonic measure $omega(rho, E^*, D^*),,$ where $E^* = {z: z^n in [-1,0] }$ and $D^* ={z: |z|<1, |{rm arg} z| < pi/n} ,.$ This implies, for instance, a solution to a problem of R.W. Barnard, L. Cole, and A. Yu. Solynin concerning a lower estimate of the quantity $inf_{E} max_{k=1,...,n} omega(a_k,E, D_k),$ for arbitrary points of the circle $|z| = rho ,.$ These authors stated this hypothesis in the particular case when the points are equally distributed on the circle $|z| = rho ,.$