No Arabic abstract
A one-component inner function $Theta$ is an inner function whose level set $$Omega_{Theta}(varepsilon)={zin mathbb{D}:|Theta(z)|<varepsilon}$$ is connected for some $varepsilonin (0,1)$. We give a sufficient condition for a Blaschke product with zeros in a Stolz domain to be a one-component inner function. Moreover, a sufficient condition is obtained in the case of atomic singular inner functions. We study also derivatives of one-component inner functions in the Hardy and Bergman spaces. For instance, it is shown that, for $0<p<infty$, the derivative of a one-component inner function $Theta$ is a member of the Hardy space $H^p$ if and only if $Theta$ belongs to the Bergman space $A_{p-1}^p$, or equivalently $Thetain A_{p-1}^{2p}$.
We present a characterization of one-component inner functions in terms of the location of their zeros and their associated singular measure. As consequence we answer several questions posed by J. Cima and R. Mortini. In particular we prove that for any inner function $Theta$ whose singular set has measure zero, one can find a Blaschke product $B$ such that $Theta B$ is one-component. We also obtain a characterization of one-component singular inner functions which is used to produce examples of discrete and continuous one-component singular inner functions.
We discuss the concept of inner function in reproducing kernel Hilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to $1/f$, where $f$ is a function in the space. We revisit some classical examples from this perspective, and show how a construction of Shapiro and Shields can be modified to produce inner functions.
In this paper, following Grothendieck {it Esquisse dun programme}, which was motivated by Belyis work, we study some properties of surfaces $X$ which are triangulated by (possibly ideal) isometric equilateral triangles of one of the spherical, euclidean or hyperbolic geometries. These surfaces have a natural Riemannian metric with conic singularities. In the euclidean case we analyze the closed geodesics and their lengths. Such surfaces can be given the structure of a Riemann surface which, considered as algebraic curves, are defined over $bar{mathbb{Q}}$ by a theorem of Belyi. They have been studied by many authors of course. Here we define the notion of connected sum of two Belyi functions and give some concrete examples. In the particular case when $X$ is a torus, the triangulation leads to an elliptic curve and we define the notion of a peel obtained from the triangulation (which is a metaphor of an orange peel) and relate this peel with the modulus $tau$ of the elliptic curve. Many fascinating questions arise regarding the modularity of the elliptic curve and the geometric aspects of the Taniyama-Shimura-Weil theory.
For $frac12<p<infty$, $0<q<infty$ and a certain two-sided doubling weight $omega$, we characterize those inner functions $Theta$ for which $$|Theta|_{A^{p,q}_omega}^q=int_0^1 left(int_0^{2pi} |Theta(re^{itheta})|^p dthetaright)^{q/p} omega(r),dr<infty.$$ Then we show a modified version of this result for $pge q$. Moreover, two additional characterizations for inner functions whose derivative belongs to the Bergman space $A_omega^{p,p}$ are given.
We study the geometry of the scale invariant Cassinian metric and prove sharp comparison inequalities between this metric and the hyperbolic metric in the case when the domain is either the unit ball or the upper half space. We also prove sharp distortion inequalities for the scale invariant Cassinian metric under Mobius transformations.