Do you want to publish a course? Click here

Evolution of the Milky Way in Semi-Analytic Models: Detecting Cold Gas at z=3 with ALMA and SKA

180   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We forecast the abilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Square Kilometer Array (SKA) to detect CO and HI emission lines in galaxies at redshift z=3. A particular focus is set on Milky Way (MW) progenitors at z=3 for their detection within 24 h constitutes a key science goal of ALMA. The analysis relies on a semi-analytic model, which permits the construction of a MW progenitor sample by backtracking the cosmic history of all simulated present-day galaxies similar to the real MW. Results: (i) ALMA can best observe a MW at z=3 by looking at CO(3-2) emission. The probability of detecting a random model MW at 3-sigma in 24 h using 75 km/s channels is roughly 50%, and these odds can be increased by co-adding the CO(3-2) and CO(4-3) lines. These lines fall into ALMA band 3, which therefore represents the optimal choice towards MW detections at z=3. (ii) Higher CO transitions contained in the ALMA bands geq6 will be invisible, unless the considered MW progenitor coincidentally hosts a major starburst or an active black hole. (iii) The high-frequency array of SKA, fitted with 28.8 GHz receivers, would be a powerful instrument for observing CO(1-0) at z=3, able to detect nearly all simulated MWs in 24 h. (iv) HI detections in MWs at z=3 using the low-frequency array of SKA will be impossible in any reasonable observing time. (v) SKA will nonetheless be a supreme ha survey instrument through its enormous instantaneous field-of-view (FoV). A one year pointed HI survey with an assumed FoV of 410 sqdeg would reveal at least 10^5 galaxies at z=2.95-3.05. (vi) If the positions and redshifts of those galaxies are known from an optical/infrared spectroscopic survey, stacking allows the detection of HI at z=3 in less than 24 h.



rate research

Read More

We present an updated model for the evolution of the orbits of orphan galaxies to be used in the SAG semi-analytical model of galaxy formation and evolution. In cosmological simulations, orphan galaxies are those satellite galaxies for which, due to limited mass resolution, halo finders lose track of their dark matter subhalos and can no longer be distinguished as self-bound overdensities within the larger host system. Since the evolution of orphans depends strongly on the orbit they describe within their host halo, a proper treatment of their evolution is crucial in predicting the distribution of subhalos and satellite galaxies. The model proposed takes into account the dynamical friction drag, mass loss by tidal stripping and a proximity merger criterion, also it is simple enough to be inexpensive from a computational point of view. To calibrate this model, we apply it onto a dark matter only simulation and compare the results with a high resolution simulation, considering the halo mass function and the two-point correlation function as constraints. We show that while the halo mass function fails to put tight constraints on the dynamical friction, the addition of clustering information helps to better define the parameters of the model related to the spatial distribution of subhalos. Using the model with the best fit parameters allows us to reproduce the halo mass function to a precision better than 5 per cent, and the two point correlation function at a precision better than 10 per cent.
We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of z=0 SFGs with stellar mass M=10^{10.5} Msun are typically half as massive at z~1. This late-time stellar mass assembly is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z~0 have grown in half-light radius by a factor of ~1.4 since z~1. The half-light radius grows with stellar mass as r_e M^{0.29}. While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H-alpha maps for SFGs at z~1 are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R=8 kpc to have increased by a factor of ~2 since z~1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.
The intergalactic medium (IGM) plays an important role in the formation and evolution of galaxies. Recent developments in upcoming radio telescopes are starting to open up the possibility of making a first direct detection of the 21 cm signal of neutral hydrogen (HI) from the warm gas of the IGM in large-scale filaments. The cosmological hydrodynamical EAGLE simulation is used to estimate the typical IGM filament signal. Assuming the same average signal for all filaments, a prediction is made for the detectability of such a signal with the upcoming mid-frequency array of the Square Kilometer Array (SKA1-mid) or the future upgrade to SKA2. The signal-to-noise (S/N) then only depends on the size and orientation of each filament. With filament spines inferred from existing galaxy surveys as a proxy for typical real filaments, we find hundreds of filaments in the region of the sky accessible to the SKA that can be detected. Once the various phases of the SKA telescope become operational, their own surveys will be able to find the galaxies required to infer the position of even more filaments within the survey area. We find that in 120 h, SKA1-mid/SKA2 will detect HI emission from the strongest filaments in the field with a S/N of the order of 10 to $sim$150 for the most pessimistic model considered here. Some of the brighter filaments can be detected with an integration time of a few minutes with SKA1-mid and a few seconds with SKA2. Therefore, SKA2 will be capable of not only detecting but also mapping a large part of the IGM in these filaments.
118 - R. Decarli , C. Carilli , C. Casey 2018
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtually any $z>1.5$, thus exposing the evolution of gaseous reservoirs from the earliest epochs down to the peak of the cosmic history of star formation. The order-of-magnitude improvement in the number of CO detections with respect to state-of-the-art observational campaigns will provide a unique insight on the evolution of galaxies through cosmic time.
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas with $|v_{rm LSR}| < 25 $ kms$^{-1}$ on angular scales of 11 to 16. Unsharp masking (USM) is applied to extract small scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes $|b|>20^circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{rm HI} simeq 10^{19.1},{rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{rm HI} simeq 10^{20} {rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{rm tot} = (6.0 pm 1.8)mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is in the range $ 14 < n < 47 {rm cm^{-3}}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا