Do you want to publish a course? Click here

Detecting the neutral IGM in filaments with the SKA

112   0   0.0 ( 0 )
 Added by Robin Kooistra
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The intergalactic medium (IGM) plays an important role in the formation and evolution of galaxies. Recent developments in upcoming radio telescopes are starting to open up the possibility of making a first direct detection of the 21 cm signal of neutral hydrogen (HI) from the warm gas of the IGM in large-scale filaments. The cosmological hydrodynamical EAGLE simulation is used to estimate the typical IGM filament signal. Assuming the same average signal for all filaments, a prediction is made for the detectability of such a signal with the upcoming mid-frequency array of the Square Kilometer Array (SKA1-mid) or the future upgrade to SKA2. The signal-to-noise (S/N) then only depends on the size and orientation of each filament. With filament spines inferred from existing galaxy surveys as a proxy for typical real filaments, we find hundreds of filaments in the region of the sky accessible to the SKA that can be detected. Once the various phases of the SKA telescope become operational, their own surveys will be able to find the galaxies required to infer the position of even more filaments within the survey area. We find that in 120 h, SKA1-mid/SKA2 will detect HI emission from the strongest filaments in the field with a S/N of the order of 10 to $sim$150 for the most pessimistic model considered here. Some of the brighter filaments can be detected with an integration time of a few minutes with SKA1-mid and a few seconds with SKA2. Therefore, SKA2 will be capable of not only detecting but also mapping a large part of the IGM in these filaments.



rate research

Read More

We forecast the abilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Square Kilometer Array (SKA) to detect CO and HI emission lines in galaxies at redshift z=3. A particular focus is set on Milky Way (MW) progenitors at z=3 for their detection within 24 h constitutes a key science goal of ALMA. The analysis relies on a semi-analytic model, which permits the construction of a MW progenitor sample by backtracking the cosmic history of all simulated present-day galaxies similar to the real MW. Results: (i) ALMA can best observe a MW at z=3 by looking at CO(3-2) emission. The probability of detecting a random model MW at 3-sigma in 24 h using 75 km/s channels is roughly 50%, and these odds can be increased by co-adding the CO(3-2) and CO(4-3) lines. These lines fall into ALMA band 3, which therefore represents the optimal choice towards MW detections at z=3. (ii) Higher CO transitions contained in the ALMA bands geq6 will be invisible, unless the considered MW progenitor coincidentally hosts a major starburst or an active black hole. (iii) The high-frequency array of SKA, fitted with 28.8 GHz receivers, would be a powerful instrument for observing CO(1-0) at z=3, able to detect nearly all simulated MWs in 24 h. (iv) HI detections in MWs at z=3 using the low-frequency array of SKA will be impossible in any reasonable observing time. (v) SKA will nonetheless be a supreme ha survey instrument through its enormous instantaneous field-of-view (FoV). A one year pointed HI survey with an assumed FoV of 410 sqdeg would reveal at least 10^5 galaxies at z=2.95-3.05. (vi) If the positions and redshifts of those galaxies are known from an optical/infrared spectroscopic survey, stacking allows the detection of HI at z=3 in less than 24 h.
65 - Ruta Kale 2016
The intra-cluster and inter-galactic media (ICM, IGM) that pervade the large scale structure of the Universe are known to be magnetised at sub-micro Gauss to micro Gauss levels and to contain cosmic rays (CRs). The acceleration of CRs and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the ICM such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of CR acceleration. Observations with radiotelescopes such as the GMRT, the VLA and the WSRT (0.15 - 2 GHz) have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. Due to the limitations of current radio telescopes, wide-band studies and exploration of low mass and supercluster-scale systems is difficult. The Square Kilometer Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05 - 20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the CR acceleration mechanisms. The higher frequency (> 5 GHz) observations will be able to use the Sunyaev-Zeldovich effect to probe the ICM pressure in addition to the tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the off-state radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models. [abridged]
The dipole anisotropy seen in the {cosmic microwave background radiation} is interpreted as due to our peculiar motion. The Cosmological Principle implies that this cosmic dipole signal should also be present, with the same direction, in the large-scale distribution of matter. Measurement of the cosmic matter dipole constitutes a key test of the standard cosmological model. Current measurements of this dipole are barely above the expected noise and unable to provide a robust test. Upcoming radio continuum surveys with the SKA should be able to detect the dipole at high signal to noise. We simulate number count maps for SKA survey specifications in Phases 1 and 2, including all relevant effects. Nonlinear effects from local large-scale structure contaminate the {cosmic (kinematic)} dipole signal, and we find that removal of radio sources at low redshift ($zlesssim 0.5$) leads to significantly improved constraints. We forecast that the SKA could determine the kinematic dipole direction in Galactic coordinates with an error of $(Delta l,Delta b)sim(9^circ,5^circ)$ to $(8^circ, 4^circ)$, depending on the sensitivity. The predicted errors on the relative speed are $sim 10%$. These measurements would significantly reduce the present uncertainty on the direction of the radio dipole, and thus enable the first critical test of consistency between the matter and CMB dipoles.
121 - Sultan Hassan 2019
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNN), to simultaneously estimate the astrophysical and cosmological parameters from 21cm maps from semi-numerical simulations. We further convert the simulated 21cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (f$_{rm esc}$), the ionizing emissivity power dependence on halo mass ($C_{rm ion}$) and the ionizing emissivity redshift evolution index ($D_{rm ion}$), and three cosmological parameters, namely the matter density parameter ($Omega_{m}$), the dimensionless Hubble constant ($h$), and the matter fluctuation amplitude ($sigma_{8}$), from 21cm maps at several redshifts. With the presence of noise from SKA, our designed CNNs are still able to recover these astrophysical and cosmological parameters with great accuracy ($R^{2} > 92%$), improving to $R^{2} > 99%$ towards low redshift and low neutral fraction values. Our results show that future 21cm observations can play a key role to break degeneracy between models and tightly constrain the astrophysical and cosmological parameters, using only few frequency channels.
Detecting the large-scale structure of the Universe based on the galaxy distribution and characterising its components is of fundamental importance in astrophysics but is also a difficult task to achieve. Wide-area spectroscopic redshift surveys are required to accurately measure galaxy positions in space that also need to cover large areas of the sky. It is also difficult to create algorithms that can extract cosmic web structures (e.g. filaments). Moreover, these detections will be affected by systematic uncertainties that stem from the characteristics of the survey used (e.g. its completeness and coverage) and from the unique properties of the specific method adopted to detect the cosmic web (i.e. the assumptions it relies on and the free parameters it may employ). For these reasons, the creation of new catalogues of cosmic web features on wide sky areas is important, as this allows users to have at their disposal a well-understood sample of structures whose systematic uncertainties have been thoroughly investigated. In this paper we present the filament catalogues created using the discrete persistent structure extractor (DisPerSE) tool in the Sloan Digital Sky Survey (SDSS), and we fully characterise them in terms of their dependence on the choice of parameters pertaining to the algorithm, and with respect to several systematic issues that may arise in the skeleton as a result of the properties of the galaxy distribution (such as Finger-of-God redshift distortions and defects of the density field that are due to the boundaries of the survey).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا