No Arabic abstract
By the use of cyclic symmetry, KK relations and BCJ relations, one can reduce the number of independent $N$-point color-ordered tree amplitudes in gauge theory and string theory from $N!$ to $(N-3)!$. In this paper, we investigate these relations at tree-level in both string theory and field theory. We will show that there are two primary relations. All other relations can be generated by the primary relations. In string theory, the primary relations can be chosen as cyclic symmetry as well as either the fundamental KK relation or the fundamental BCJ relation. In field theory, the primary relations can only be chosen as cyclic symmetry and the fundamental BCJ relation. We will further show a kind of more general relation which can also be generated by the primary relations. The general formula of the explicit minimal-basis expansions for color-ordered open string tree amplitudes will be given and proven in this paper.
Pair creation of strings in time-dependent backgrounds is studied from an effective field theory viewpoint, and some possible cosmological applications are discussed. Simple estimates suggest that excited strings may have played a significant role in preheating, if the string tension as measured in four-dimensional Einstein frame falls a couple of orders of magnitude below the four-dimensional Planck scale.
We use the dictionary between general field theories and strongly homotopy algebras to provide an algebraic formulation of the procedure of integrating out of degrees of freedom in terms of homotopy transfer. This includes more general effective theories in which some massive modes are kept while other modes of a comparable mass scale are integrated out, as first explored by Sen in the context of closed string field theory. We treat $L_infty$-algebras both in terms of a nilpotent coderivation and, on the dual space, in terms of a nilpotent derivation (corresponding to the BRST charge of the field theory) and provide explicit formulas for homotopy transfer. These are then shown to govern the integrating out of degrees of freedom at tree level, while the generalization to loop level will be explored in a sequel to this paper.
Kaluza-Klein compactifications of higher dimensional Yang-Mills theories contain a number of four dimensional scalars corresponding to the internal components of the gauge field. While at tree-level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1-loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK--modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius $R$ is much bigger than the scale of the UV completion ($R gg sqrt{alpha},a$), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in $mathcal N=2,4$ Super Yang-Mills is highly suppressed due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
In this paper, we analyze the inflationary cosmology using string field theory. This is done by using the zero level contribution from string field theory, which is a non-local tachyonic action. We will use the non-local Friedmann equations for this model based on string field theory, and calculate the slow-roll parameters for this model. We will then explicitly obtain the scalar and tensorial power spectrum, their related indices, and the tensor-to-scalar ratio for this model. Finally, we use cosmological data from Planck 2013 to 2018 to constrain the free parameters in this model and find that string field theory is compatible with them.
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrounds in the light-cone gauge and we interpret a diagram from the BMN limit as a stringy diagram involving the contact term.