Do you want to publish a course? Click here

Spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states for $N_f=2+ 1$

92   0   0.0 ( 0 )
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We study the spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states. We use two sets of $N_f = 2 + 1$ gauge configurations, one set from QCDSF using the SLiNC action, and the other configurations from the Budapest-Marseille-Wuppertal collaboration, using the HEX smeared clover action. To extract information about the excited states, we choose a suitable basis of operators to implement the variational method.



rate research

Read More

301 - Y. Namekawa 2009
Heavy-light meson system is investigated using the relativistic heavy quark action on the 2+1 dynamical flavor PACS-CS configurations at the lattice spacing $a^{-1}=2.2$ GeV and the spatial extent L=3 fm. Dynamical up-down and strange quark masses as well as the valence charm quark mass are set around their physical values. We measure the charm-$ud$ and charm-strange meson masses and decay constants. Our results are consistent with the experimental values except the hyperfine splitting of the charm-strange meson. We also estimate the CKM matrix elements in the second row.
We present improved results for the B and D meson spectrum from lattice QCD including the effect of u/d,s and c quarks in the sea. For the B mesons the Highly Improved Staggered Quark action is used for the sea and light valence quarks and NonRelativistic QCD for the b quark including O(alpha_s) radiative corrections to many of the Wilson coefficients for the first time. The D mesons use the Highly Improved Staggered Quark action for both valence quarks on the same sea. We find M_{B_s}-M_B=84(2) MeV, M_{B_s}=5.366(8) GeV, M_{B_c}=6.278(9) GeV, M_{D_s}=1.9697(33) GeV, and M_{D_s}-M_{D}=101(3) MeV. Our results for the B meson hyperfine splittings are M_{B^*}-M_{B}=50(3) MeV, M_{B_s^*}-M_{B_s}=52(3) MeV, in good agreement with existing experimental results. This demonstrates that our perturbative improvement of the NRQCD chromo-magnetic coupling works for both heavyonium and heavy-light mesons. We predict M_{B_c^*}-M_{B_c}=54(3) MeV. We also present first results for the radially excited B_c states as well as the orbitally excited scalar B_c0^* and axial vector B_c1 mesons.
82 - S.-K.Choi 2008
We report the observation of two resonance-like structures in the $pi^+ chi_{c1}$ invariant mass distribution near 4.1 GeV in exclusive $Bto Kpi^+chi_{c1}$ decays. A detailed Dalitz-plot analysis demonstrates that these structures cannot be produced by reflections from any known and possibly unknown resonances in the $Kpi$ channel. If these two peaks are produced by resonances in the $pi^+chi_{c1}$ channel, their minimal quark structure would have to be a $cbar{c}ubar{d}$ tetraquark arrangement, similar to that proposed for the $Z^+(4430)$ structure reported by Belle last year in the $pi^+psi^{}$ mass distribution produced in $Bto Kpi^+psi^{}$ decays. In addition, we report some new measurements on the properties of the X(3872) meson and the $1^{--}$ $Y$ states that are produced with initial state radiation. %and also other latest XYZ results. The analyses are based on a large data sample recorded at the $Upsilon(4S)$ resonances and nearby continuum with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider.
380 - A. Ali Khan , V. Braun , T. Burch 2007
We compute decay constants of heavy-light mesons in quenched lattice QCD with a lattice spacing of a ~ 0.04 fm using non-perturbatively O(a) improved Wilson fermions and O(a) improved currents. We obtain f_{D_s} = 220(6)(5)(11) MeV, f_D = 206(6)(3)(22) MeV, f_{B_s} = 205(7)(26)(17) MeV and f_B = 190(8)(23)(25) MeV, using the Sommer parameter r_0 = 0.5 fm to set the scale. The first error is statistical, the second systematic and the third from assuming a +-10% uncertainty in the experimental value of r_0. A detailed discussion is given in the text. We also present results for the meson decay constants f_K and f_pi and the rho meson mass.
We present RBC heavy-light meson spectroscopy with quenched DBW2 gauge configurations at lattice cutoff of about 3 GeV. Both heavy and light quarks are described by domain-wall fermions (DWF). The heavy quark mass ranges between 0.1 and 0.4 lattice units, covering charm. The light quark mass ranges between 0.008 and 0.04, covering strange. In particular, we discuss charmed (D and D*) and charm-strange (Ds and DsJ) mesons with spin-parity JP= 0+/- and 1+/-. The preliminary results indicate that DWF describe charm on the quenched DBW2 ensemble at this cutoff. The masses of the JP=0+/- and 1+/- D, D*, Ds and DsJ meson states are well reproduced to within a few %; their parity splitting, DeltaJ, are better reproduced than previous works, with only 10-20 % over estimations; the experimental observation that the splitting for non-strange states is bigger than that for strange states is reproduced as well; but the hyperfine splittings are only 60-65 % reproduced. Regarding the depenence on heavy quark mass, J=0 and J=1 parity splittings are degenerate for heavy quark mass heavier than 0.2-0.3 lattice units a; the J=0 parity splitting increases as the heavy quark mass decreases further while the J=1 splitting does not.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا