Do you want to publish a course? Click here

Heavy-light mesons in 2+1 flavor lattice QCD

307   0   0.0 ( 0 )
 Added by Yusuke Namekawa
 Publication date 2009
  fields
and research's language is English
 Authors Y. Namekawa




Ask ChatGPT about the research

Heavy-light meson system is investigated using the relativistic heavy quark action on the 2+1 dynamical flavor PACS-CS configurations at the lattice spacing $a^{-1}=2.2$ GeV and the spatial extent L=3 fm. Dynamical up-down and strange quark masses as well as the valence charm quark mass are set around their physical values. We measure the charm-$ud$ and charm-strange meson masses and decay constants. Our results are consistent with the experimental values except the hyperfine splitting of the charm-strange meson. We also estimate the CKM matrix elements in the second row.



rate research

Read More

We present the results of the physical point simulation in 2+1 flavor lattice QCD with the nonperturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action at $beta=1.9$ on a $32^3 times 64$ lattice. The physical quark masses together with the lattice spacing is determined with $m_pi$, $m_K$ and $m_Omega$ as physical inputs. There are two key algorithmic ingredients to make possible the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed HMC algorithm to reduce the computational cost. The other is the reweighting technique to adjust the hopping parameters exactly to the physical point. The physics results include the hadron spectrum, the quark masses and the pseudoscalar meson decay constants. The renormalization factors are nonperturbatively evaluated with the Schr{o}dinger functional method. The results are compared with the previous ones obtained by the chiral extrapolation method.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
179 - K. U. Can , G. Erkol , M. Oka 2012
Using the axial-vector coupling and the electromagnetic form factors of the D and D* mesons in 2+1 flavor Lattice QCD, we compute the D*Dpi, DDrho and D*D*rho coupling constants, which play an important role in describing the charm hadron interactions in terms of meson-exchange models. We also extract the charge radii of D and D* mesons and determine the contributions of the light and charm quarks separately.
We investigate the interaction between $Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $OmegaOmega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated on the lattice by using the PACS-CS gauge configurations with the lattice spacing $asimeq 0.09$ fm, the lattice volume $Lsimeq 2.9$ fm and the quark masses corresponding to $m_pi simeq 700$ MeV and $m_Omega simeq 1970$ MeV. The $OmegaOmega$ potential has a repulsive core at short distance and an attractive well at intermediate distance. Accordingly, the phase shift obtained from the potential shows moderate attraction at low energies. Our data indicate that the $OmegaOmega$ system with the present quark masses may appear close to the unitary limit where the scattering length diverges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا