Do you want to publish a course? Click here

Astrophysical models for the origin of the positron excess

229   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the last three years, several satellite and balloon observatories have suggested intriguing features in the cosmic ray lepton spectra. Most notably, the PAMELA satellite has suggested an anomalous rise with energy of the cosmic ray positron fraction. In this article, we summarize the global picture emerging from the data and recapitulate the main features of different types of explanations proposed. The perspectives in testing different scenarios as well as inferring some astrophysical diagnostics from current/near future experiments are also discussed.



rate research

Read More

As the TeV halos around Geminga and PSR B0656+14 have been confirmed by HAWC, slow diffusion of cosmic rays could be general around pulsars, and the cosmic positron spectrum from pulsars could be significantly changed. As a consequence, the most likely pulsar source of the positron excess, Geminga, is no more a viable candidate under the additional constraint from Fermi-LAT. Moreover, the latest measurement by AMS-02 shows a clear cutoff in the positron spectrum, which sets a strict constraint on the age of the pulsar source. Considering these new developments we reanalyze the scenario in this work. By checking all the observed pulsars under the two-zone diffusion scenario, we propose for the first time that PSR B1055-52 is a very promising source of the positron excess. B1055-52 can well reproduce both the intensity and the high-energy cut of the AMS-02 positron spectrum, and may also explain the H.E.S.S $e^-+e^+$ spectrum around 10 TeV. Moreover, if the slow diffusion is universal in the local interstellar medium, B1055-52 will be the unique reasonable source of the AMS-02 positron spectrum among the observed pulsars.
520 - P.O. Petrucci 2017
The X-ray spectra of many active galactic nuclei (AGN) show a soft X-ray excess below 1-2 keV on top of the extrapolated high- energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection, or the high-energy tail of thermal Comptonization in a warm (kT $sim$ 1 keV), optically thick ($tausimeq$ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGN with XMM-newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal comptonization components to fit the broad-band spectra, one for the warm corona emission and one for the high-energy continuum. In the optical-UV, we also include the reddening, the small blue bump and the Galactic extinction. In the X-rays, we include a WA and a neutral reflection. The model gives a good fit (reduced $chi^2 <1.5$) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range $sim$10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disc, i.e. that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.
We calculate the diffuse intensity of cosmic ray (CR) nuclei and their secondaries in the Boron-Carbon group produced by supernova remnants (SNR). The trajectories of charged particles in the SNR are modeled as a random walk in the test particle approximation. Secondary production by CRs colliding with gas in the SNR is included as a Monte Carlo process, while we use Galprop to account for the propagation and interactions of CRs in the Galaxy. In the vicinity of a source, we find an approximately constant B/C ratio as a function of energy. As a result, the B/C ratio at Earth does not rise with energy, but flattens instead in the high energy limit. This prediction can be soon tested by the AMS-2 collaboration.
The AMS-02 experiment has ushered cosmic-ray physics into precision era. In a companion paper, we designed an improved method to calibrate propagation models on B/C data. Here we provide a robust prediction of the $bar{p}$ flux, accounting for several sources of uncertainties and their correlations. Combined with a correlation matrix for the $bar{p}$ data, we show that the latter are consistent with a secondary origin. This paper presents key elements relevant to the dark matter search in this channel, notably by pointing out the inherent difficulties in achieving predictions at the percent-level precision.
We present the results of a search in the Super-Kamiokande (SK) detector for excesses of neutrinos with energies above a few GeV that are in the direction of the track events reported in IceCube. Data from all SK phases (SK-I through SK-IV) were used, spanning a period from April 1996 to April 2016 and corresponding to an exposure of 225 kilotonne-years . We considered the 14 IceCube track events from a data set with 1347 livetime days taken from 2010 to 2014. We use Poisson counting to determine if there is an excess of neutrinos detected in SK in a 10 degree search cone (5 degrees for the highest energy data set) around the reconstructed direction of the IceCube event. No significant excess was found in any of the search directions we examined. We also looked for coincidences with a recently reported IceCube multiplet event. No events were detected within a $pm$ 500 s time window around the first detected event, and no significant excess was seen from that direction over the lifetime of SK.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا