Do you want to publish a course? Click here

Sr3Ru2O7: Thermodynamics of Phase Formation in a Quantum Critical Metal

115   0   0.0 ( 0 )
 Added by Andreas W. Rost
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The behaviour of matter near zero temperature continuous phase transitions, or quantum critical points (QCPs) is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical soup. Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T_c. The associated quantum critical point, which is concealed by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.



rate research

Read More

We report measurements of quantum oscillations detected in the putative nematic phase of Sr3Ru2O7. Significant improvements in sample purity enabled the resolution of small amplitude dHvA oscillations between two first order metamagnetic transitions delimiting the phase. Two distinct frequencies were observed, and their amplitudes follow the normal Lifshitz-Kosevich profile. The Fermi surface sheets seem to correspond to a subset of those detected outside the phase. Variations of the dHvA frequencies are explained in terms of a chemical potential shift produced by reaching a peak in the density of states, and an anomalous field dependence of the oscillatory amplitude provides information on domains.
Strange-metal phenomena often develop at the border of antiferromagnetic order in strongly correlated metals. It has been well established that they can originate from the fluctuations anchored by the point of continuous quantum phase transition out of the antiferromagnetic order, i.e., a quantum critical point. What has been unclear is how these phenomena can be associated with a potential new phase of matter at zero temperature. Here we show that magnetic frustration of the 4f-local moments in the distorted Kagome intermetallic compound CePdAl gives rise to such a paramagnetic quantum-critical phase. Moreover, we demonstrate that this phase turns into a Fermi liquid through a Mott-like crossover; in a two-dimensional parameter space of pressure and magnetic field, this crossover is linked to a line of zero-temperature 4f-electron localization-delocalization phase transitions at low and moderate pressures. Our discovery motivates a new design principle for strongly correlated metallic states with unconventional excitations that may underlie the development of such effects as high temperature superconductivity.
Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical endpoint at H_c = 7.85 T. A peak in the electrical resistivity as a function of field was mimicked by the thermal resistivity. In the limit as T -> 0 K we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder (from $rho_0$(H=0T) = 2.1 $muOmega$ cm to 0.5 $muOmega$ cm) does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical endpoint.
We present a brief review of the physical properties of Sr3Ru2O7, in which the approach to a magnetic-field-tuned quantum critical point is cut off by the formation of a novel phase with transport characteristics consistent with those of a nematic electronic liquid crystal. Our goal is to summarize the physics that led to that conclusion being drawn, describing the key experiments and discussing the theoretical approaches that have been adopted. Throughout the review we also attempt to highlight observations that are not yet understood, and to discuss the future challenges that will need to be addressed by both experiment and theory.
Quantum-mechanical fluctuations between competing phases at $T=0$ induce exotic finite-temperature collective excitations that are not described by the standard Landau Fermi liquid framework. These excitations exhibit anomalous temperature dependences, or non-Fermi liquid behavior, in the transport and thermodynamic properties in the vicinity of a quantum critical point, and are often intimately linked to the appearance of unconventional Cooper pairing as observed in strongly correlated systems including the high-$T_c$ cuprate and iron pnictide superconductors. The presence of superconductivity, however, precludes direct access to the quantum critical point, and makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe$_{1/3}$Co$_{1/3}$Ni$_{1/3}$)$_{2}$As$_{2}$, indicative of quantum criticality at zero temperature and zero applied magnetic field. Beyond a linear in temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find the scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system that does not drive a pairing instability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا