Do you want to publish a course? Click here

Magnetic Blue Phase in the Chiral Itinerant Magnet MnSi

118   0   0.0 ( 0 )
 Added by Dmitry Reznik
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chiral nematic liquid crystals sometimes form blue phases characterized by spirals twisting in different directions. By combining model calculations with neutron-scattering experiments, we show that the magnetic analogue of blue phases does form in the chiral itinerant magnet MnSi in a large part of the phase diagram. The properties of this blue phase explain a number of previously reported puzzling features of MnSi such as partial magnetic order and a two-component specific-heat and thermal-expansion anomaly at the magnetic transition.



rate research

Read More

We have investigated the effect of Ge-substitution to the magnetic ordering in the B20 itinerant chiral magnet MnSi prepared by melting and annealing under ambient pressure. From metallurgical survey, the solubility limit of Ge was found to be $x=0.144(5)$ with annealing temperature $T_mathrm{an} = 1073$ K. Magnetization measurements on MnSi$_{1-x}$Ge$_x$ samples show that the helical ordering temperature $T_{mathrm{c}}$ increases rapidly in the low-$x$ range, whereas it becomes saturated at higher concentration $x>~0.1$. The Ge substitution also increases both the saturation magnetization $M_mathrm{s}$ and the critical field to the fully polarized state $H_mathrm{c2}$. In contrast to the saturation behavior of $T_mathrm{c}$, those parameters increase linearly up to the highest Ge concentration investigated. In the temperature-magnetic field phase diagram, we found enlargement of the skyrmion phase region for large $x$ samples. We, furthermore, observed the non-linear behavior of helical modulation vector $k$ as a function of Ge concentration, which can be described qualitatively using the mean field approximation.
Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently $beta$-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while $beta$-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co$_7$Zn$_7$Mn$_6$ to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature $T_mathrm{c}$, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below $T_mathrm{c}$. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to $beta$-Mn.
The evolution of the magnetic and charge transport properties of itinerant magnetic metal MnSi with the substitution of Al and Ga on the Si site is investigated. We observe an increase in unit cell volume indicating that both Al and Ga substitutions create negative chemical pressure. There are substantial increases in the Curie temperature and the ordered moment demonstrating that the substitutions give the magnetism a more local character. The substitutions also increase the range of temperature and field where the skyrmion phase is stable due to a change in the character of the magnetism. In contrast to the behavior of pure MnSi and expectations for the intrinsic anomalous Hall effect, we find a significant temperature dependence to the magnitude and sign of anomalous Hall conductivity constant in Al or Ga substituted samples. This temperature dependence likely reflects changes in the spin-orbit coupling strength with temperature, which may have significant consequences on the helical and skyrmion states. Overall, we observe a continuous evolution of magnetic and charge transport properties through positive to negative pressure
Magnetic materials with competing magnetocrystalline anisotropy and dipolar energies can develop a wide range of domain patterns, including classical stripe domains, domain branching, as well as topologically trivial and non-trivial (skyrmionic) bubbles. We image the magnetic domain pattern of Fe$_3$Sn$_2$ by magnetic force microscopy (MFM) and study its evolution due to geometric confinement, magnetic fields, and their combination. In Fe$_3$Sn$_2$ lamellae thinner than 3 $mu$m, we observe stripe domains whose size scales with the square root of the lamella thickness, exhibiting classical Kittel scaling. Magnetic fields turn these stripes into a highly disordered bubble lattice, where the bubble size also obeys Kittel scaling. Complementary micromagnetic simulations quantitatively capture the magnetic field and geometry dependence of the magnetic patterns, reveal strong reconstructions of the patterns between the surface and the core of the lamellae, and identify the observed bubbles as skyrmionic bubbles. Our results imply that geometrical confinement together with competing magnetic interactions can provide a path to fine-tune and stabilize different types of topologically trivial and non-trivial spin structures in centrosymmetric magnets.
We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and Neutron Spin Echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous skyrmion phase: it appears in a limited temperature range just above the helical transition Tc and coexists with the helical phase at Tc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا