Do you want to publish a course? Click here

Boundary detection in disease mapping studies

263   0   0.0 ( 0 )
 Added by Duncan Lee
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

In disease mapping, the aim is to estimate the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risks can be identified. A Bayesian hierarchical approach is typically used to produce such maps, which models the risk surface with a set of spatially smooth random effects. However, in complex urban settings there are likely to be boundaries in the risk surface, which separate populations that are geographically adjacent but have very different risk profiles. Therefore this paper proposes an approach for detecting such risk boundaries, and tests its effectiveness by simulation. Finally, the model is applied to lung cancer incidence data in Greater Glasgow, Scotland, between 2001 and 2005.



rate research

Read More

We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic Susceptible-Infected-Susceptible (SIS) model. Here we extend previous results due to Parsons and Quince (2007), Parsons et al (2008) and Lin, Kim and Doering (2012). The second model, a two-strain generalization of the stochastic Susceptible-Infected-Recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of sub-population sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the sub-populations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically typical initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.
The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, $i.e$, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, $i.e$, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.
In this study, we develop the mathematical model to understand the coupling between the spreading dynamics of infectious diseases and the mobility dynamics through urban transportation systems. We first describe the mobility dynamics of the urban population as the process of leaving from home, traveling to and from the activity locations, and engaging in activities. We then embed the susceptible-exposed-infectious-recovered (SEIR) process over the mobility dynamics and develops the spatial SEIR model with travel contagion (Trans-SEIR), which explicitly accounts for contagions both during travel and during daily activities. We investigate the theoretical properties of the proposed model and show how activity contagion and travel contagion contribute to the average number of secondary infections. In the numerical experiments, we explore how the urban transportation system may alter the fundamental dynamics of the infectious disease, change the number of secondary infections, promote the synchronization of the disease across the city, and affect the peak of the disease outbreaks. The Trans-SEIR model is further applied to the understand the disease dynamics during the COVID-19 outbreak in New York City, where we show how the activity and travel contagion may be distributed and how effective travel control can be implemented with only limited resources. The Trans-SEIR model along with the findings in our study may have significant contributions to improving our understanding of the coupling between urban transportation and disease dynamics, the development of quarantine and control measures of disease system, and promoting the idea of disease-resilient urban transportation networks.
The transmission of vector infectious diseases, which produces complex spatiotemporal patterns, is analyzed by a periodically forced two-dimensional cellular automata model. The system, which comprises three population levels, is introduced to describe complex features of the dynamics of the vector transmitted dengue epidemics, known to be very sensitive to seasonal variables. The three coupled levels represent the human, the adult and immature vector populations. The dynamics includes external seasonality forcing (rainfall intensity data), human and mosquito mobility, and vector control effects. The model parameters, even if bounded to well defined intervals obtained from reported data, can be selected to reproduce specific epidemic outbursts. In the current study, explicit results are obtained by comparison with actual data retrieved from the time-series of dengue epidemics in two cities in Brazil. The results show fluctuations that are not captured by mean-field models. It also reveals the qualitative behavior of the spatiotemporal patterns of the epidemics. In the extreme situation of absence of external periodic drive, the model predicts completely distinct long time evolution. The model is robust in the sense that it is able to reproduce the time series of dengue epidemics of different cities, provided the forcing term takes into account the local rainfall modulation. Finally, the dependence between epidemics threshold and vector control undergoes a transition from power law to stretched exponential behavior due to human mobility effect.
Disease mapping is the field of spatial epidemiology interested in estimating the spatial pattern in disease risk across $n$ areal units. One aim is to identify units exhibiting elevated disease risks, so that public health interventions can be made. Bayesian hierarchical models with a spatially smooth conditional autoregressive prior are used for this purpose, but they cannot identify the spatial extent of high-risk clusters. Therefore we propose a two stage solution to this problem, with the first stage being a spatially adjusted hierarchical agglomerative clustering algorithm. This algorithm is applied to data prior to the study period, and produces $n$ potential cluster structures for the disease data. The second stage fits a separate Poisson log-linear model to the study data for each cluster structure, which allows for step-changes in risk where two clusters meet. The most appropriate cluster structure is chosen by model comparison techniques, specifically by minimising the Deviance Information Criterion. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا