Do you want to publish a course? Click here

Social distancing strategies against disease spreading

121   0   0.0 ( 0 )
 Added by Lucas Valdez D.
 Publication date 2013
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, $i.e$, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, $i.e$, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.



rate research

Read More

70 - I. A. Perez 2020
The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction $q$ of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap $q$. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap $q$, social distancing policies might not be needed at all to maintain the functionality of the system.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results show that such coupled dynamics exhibits a myriad of phenomena such as nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate optimal segregation level where the community structure enhances negative opinions over vaccination but counterintuitively hinders - rather than favoring - the global disease spreading. Thus, our results hint vaccination campaigns should avoid policies that end up segregating excessively anti-vaccine groups so that they effectively work as echo chambers in which individuals look to confirmation without jeopardising the safety of the whole population.
213 - Shogo Mizutaka , Kizashi Mori , 2021
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model, which accurately describe the synergistic SIS dynamics. We quantitatively confirm all qualitative predictions of the mean-field treatment in numerical evaluations of the approximate master equations.
Albeit epidemic models have evolved into powerful predictive tools for the spread of diseases and opinions, most assume memoryless agents and independent transmission channels. We develop an infection mechanism that is endowed with memory of past exposures and simultaneously incorporates the joint effect of multiple infectious sources. Analytic equations and simulations of the susceptible-infected-susceptible model in unstructured substrates reveal the emergence of an additional phase that separates the usual healthy and endemic ones. This intermediate phase shows fundamentally distinct characteristics, and the system exhibits either excitability or an exotic variant of bistability. Moreover, the transition to endemicity presents hybrid aspects. These features are the product of an intricate balance between two memory modes and indicate that non-Markovian effects significantly alter the properties of spreading processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا