Do you want to publish a course? Click here

Sub-kHz-level relative stabilization of an intracavity doubled continuous wave optical parametric oscillator using Pound-Drever-Hall scheme

205   0   0.0 ( 0 )
 Added by Fabien Bretenaker
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the relative frequency stabilization of an intracavity frequency doubled singly resonant optical parametric oscillator on a Fabry-Perotetalon. The red/orange radiation produced by the frequency doubling of the intracavity resonant idler is stabilized using the Pound-Drever-Hall locking technique. The relative frequency noise of this orange light, when integrated from 1 Hz to 50 kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the pump laser is shown experimentally to be transferred to the non resonant signal beam.



rate research

Read More

The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain $> 10^5$ V/A, and input current noise $< 4$ pA/$sqrt{mathrm{Hz}}$, allowing us to obtain shot-noise-limited performance with low optical power.
We combine a tunable continuous-wave optical parametric oscillator and a femtosecond Ti:Sapphire laser frequency comb to provide a phase-coherent bridge between the visible and mid-infrared spectral ranges. As a first demonstration of this new technique we perform a direct frequency comparison between an iodine stabilized Nd:YAG laser at 1064 nm and an infrared methane optical frequency standard at $3.39 mu$m.
We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission supports many more transverse modes than the fundamental emission, and exhibit lower spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The high power, low spatial coherence and good directionality makes the green degenerate laser an attractive illumination source for parallel imaging and projection display.
Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.
We design and demonstrate a novel technique for the active stabilization of the relative phase between seed and pump in an optical parametric oscillator (OPO). We show that two error signals for the stabilization of the OPO frequency, based on Pound-Drever-Hall (PDH), and of the seed-pump relative phase can be obtained just from the reflected beam of the OPO cavity, without the necessity of two different modulation and demodulation stages. We also analyze the effect of the pump in the cavity stabilization for different seed-pump relative phase configurations, resulting in an offset in the PDH error signal, which has to be compensated. Finally, an application of our technique in the reliable generation of squeezed coherent states is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا