No Arabic abstract
The quantum phase transition of the Dicke-model has been observed recently in a system formed by motional excitations of a laser-driven Bose--Einstein condensate coupled to an optical cavity [1]. The cavity-based system is intrinsically open: photons can leak out of the cavity where they are detected. Even at zero temperature, the continuous weak measurement of the photon number leads to an irreversible dynamics towards a steady-state which exhibits a dynamical quantum phase transition. However, whereas the critical point and the mean field is only slightly modified with respect to the phase transition in the ground state, the entanglement and the critical exponents of the singular quantum correlations are significantly different in the two cases.
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system realizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
We show that the critical exponent of a quantum phase transition in a damped-driven open system is determined by the spectral density function of the reservoir. We consider the open-system variant of the Dicke model, where the driven boson mode and also the large N-spin couple to independent reservoirs at zero temperature. The critical exponent, which is $1$ if there is no spin-bath coupling, decreases below 1 when the spin couples to a sub-Ohmic reservoir.
We demonstrate that criticality in a driven-dissipative system is strongly influenced by the spectral properties of the reservoir. We study the open-system realization of the Dicke model, where a bosonic cavity mode couples to a large spin formed by two motional modes of an atomic Bose-Einstein condensate. The cavity mode is driven by a high frequency laser and it decays to a Markovian bath, while the atomic mode interacts with a colored reservoir. We reveal that the soft mode fails to describe the characteristics of the criticality. We calculate the critical exponent of the superradiant phase transition and identify an inherent relation to the low-frequency spectral density function of the colored bath. We show that a finite temperature of the colored reservoir does not modify qualitatively this dependence on the spectral density function.
We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose-Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition and observe a behavior which significantly deviates from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including both dissipation via the cavity field and via the atomic field. Utilizing a dissipation channel to non-destructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems.