Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system realizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
The quantum phase transition of the Dicke-model has been observed recently in a system formed by motional excitations of a laser-driven Bose--Einstein condensate coupled to an optical cavity [1]. The cavity-based system is intrinsically open: photons can leak out of the cavity where they are detected. Even at zero temperature, the continuous weak measurement of the photon number leads to an irreversible dynamics towards a steady-state which exhibits a dynamical quantum phase transition. However, whereas the critical point and the mean field is only slightly modified with respect to the phase transition in the ground state, the entanglement and the critical exponents of the singular quantum correlations are significantly different in the two cases.
We show that the critical exponent of a quantum phase transition in a damped-driven open system is determined by the spectral density function of the reservoir. We consider the open-system variant of the Dicke model, where the driven boson mode and also the large N-spin couple to independent reservoirs at zero temperature. The critical exponent, which is $1$ if there is no spin-bath coupling, decreases below 1 when the spin couples to a sub-Ohmic reservoir.
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes--Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition.