Do you want to publish a course? Click here

Information Symmetries in Irreversible Processes

198   0   0.0 ( 0 )
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We study dynamical reversibility in stationary stochastic processes from an information theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes with the consequence that the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the processs statistical properties, and its reversibility in detail. A processs temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time epsilon-machines. We analyze example irreversible processes whose epsilon-machine presentations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time epsilon-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process---the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a processs fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.



rate research

Read More

A central result that arose in applying information theory to the stochastic thermodynamics of nonlinear dynamical systems is the Information-Processing Second Law (IPSL): the physical entropy of the universe can decrease if compensated by the Shannon-Kolmogorov-Sinai entropy change of appropriate information-carrying degrees of freedom. In particular, the asymptotic-rate IPSL precisely delineates the thermodynamic functioning of autonomous Maxwellian demons and information engines. How do these systems begin to function as engines, Landauer erasers, and error correctors? Here, we identify a minimal, inescapable transient dissipation engendered by physical information processing not captured by asymptotic rates, but critical to adaptive thermodynamic processes such as found in biological systems. A component of transient dissipation, we also identify an implementation-dependent cost that varies from one physical substrate to another for the same information processing task. Applying these results to producing structured patterns from a structureless information reservoir, we show that retrodictive generators achieve the minimal costs. The results establish the thermodynamic toll imposed by a physical systems structure as it comes to optimally transduce information.
The Fisher-Rao metric from Information Geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of Information Geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction-diffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.
One of the most fundamental questions one can ask about a pair of random variables X and Y is the value of their mutual information. Unfortunately, this task is often stymied by the extremely large dimension of the variables. We might hope to replace each variable by a lower-dimensional representation that preserves the relationship with the other variable. The theoretically ideal implementation is the use of minimal sufficient statistics, where it is well-known that either X or Y can be replaced by their minimal sufficient statistic about the other while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information Xs minimal sufficient statistic preserves about Y is exactly the information that Ys minimal sufficient statistic preserves about X. As an important corollary, we consider the case where one variable is a stochastic process past and the other its future and the present is viewed as a memoryful channel. In this case, the mutual information is the channel transmission rate between the channels effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.
Path-dependent stochastic processes are often non-ergodic and observables can no longer be computed within the ensemble picture. The resulting mathematical difficulties pose severe limits to the analytical understanding of path-dependent processes. Their statistics is typically non-multinomial in the sense that the multiplicities of the occurrence of states is not a multinomial factor. The maximum entropy principle is tightly related to multinomial processes, non-interacting systems, and to the ensemble picture; It loses its meaning for path-dependent processes. Here we show that an equivalent to the ensemble picture exists for path-dependent processes, such that the non-multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a functional that plays the role of a relative entropy. We demonstrate this for self-reinforcing Polya urn processes, which explicitly generalise multinomial statistics. We demonstrate the adequacy of this constructive approach towards non-multinomial pendants of entropy by computing frequency and rank distributions of Polya urn processes. We show how microscopic update rules of a path-dependent process allow us to explicitly construct a non-multinomial entropy functional, that, when maximized, predicts the time-dependent distribution function.
We experimentally demonstrate that highly structured distributions of work emerge during even the simple task of erasing a single bit. These are signatures of a refined suite of time-reversal symmetries in distinct functional classes of microscopic trajectories. As a consequence, we introduce a broad family of conditional fluctuation theorems that the component work distributions must satisfy. Since they identify entropy production, the component work distributions encode both the frequency of various mechanisms of success and failure during computing, as well giving improved estimates of the total irreversibly-dissipated heat. This new diagnostic tool provides strong evidence that thermodynamic computing at the nanoscale can be constructively harnessed. We experimentally verify this functional decomposition and the new class of fluctuation theorems by measuring transitions between flux states in a superconducting circuit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا