Do you want to publish a course? Click here

Hysteretic magnetic pinning and reversible resistance switching in High-Tc superconductor/ferromagnet multilayers

129   0   0.0 ( 0 )
 Added by Javier Villegas
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a high-TC superconducting (YBa2Cu3O7-d) / ferromagnetic (Co/Pt multilayer) hybrid which exhibits resistance switching driven by the magnetic history: depending on the direction of the external field, a pronounced decrease or increase of the mixed-state resistance is observed as magnetization reversal occurs within the Co/Pt multilayer. We demonstrate that stray magnetic fields cause these effects via i) creation of vortices/antivortices and ii) magnetostatic pinning of vortices that are induced by the external field.



rate research

Read More

$mathrm{YBa_2Cu_3O_7/La_{2/3}Ca_{1/3}MnO_3}$ superconducting/ferromagnetic (SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a characteristic difference between the structural and magnetic depth profiles is obtained from the occurrence of a structurally forbidden Bragg peak in the FM state. The comparison with simulated reflectivity curves allows us to identify two possible magnetization profiles: a sizable magnetic moment within the SC layer antiparallel to the one in the FM layer (inverse proximity effect), or a ``dead region in the FM layer with zero net magnetic moment. The former scenario is supported by an anomalous SC-induced enhancement of the off-specular reflection, which testifies to a strong mutual interaction of SC and FM order parameters.
The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an on demand control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on switchable molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular habitat offered by an antiphase boundary of the Rashba system BiAg$_2$ stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in presence of both superconducting layers and of superconducting proximity at both superconductor/ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-induced magnetic anisotropies: by the positive in-plane uniaxial anisotropy and by the drop of magnetization. The shift and the corresponding uniaxial anisotropy grow with the thickness of the ferromagnetic layer. For instance, the anisotropy reaches 0.27~T in experiment for a sample with 350~nm thick ferromagnetic layer, and about 0.4~T in predictions, which makes it a ferromagnetic film structure with the highest anisotropy and the highest natural resonance frequency ever reported. Various scenarios for the superconductivity-induced magnetic anisotropy are discussed. As a result, the origin of the phenomenon remains unclear. Application of the proximity-induced anisotropies in superconducting magnonics is proposed as a way for manipulations with a spin-wave spectrum.
Employment of the non-trivial proximity effect in Superconductor/Ferromagnet (S/F) heterostructures for creation of novel superconducting devices requires an accurate control of magnetic states in complex thin-film multilayers composing such devices. In this work we study experimentally in-plane transport properties of micro-structured Nb/Co multilayers. We apply various experimental techniques for characterization of multilayers, including the anisotropic magnetoresistance, the Hall effect and the first-order-reversal-curves analysis. We demonstrate that a combination of those techniques can provide a detailed knowledge of the magnetic state of the multilayer. In particular, we identify the range of existence of the coherently rotating, monodomain scissor-like state. It is anticipated, that in this noncollinear magnetic state the unconventional odd-frequency spin-triplet order parameter should appear. The non-hystertic nature of this state allows reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for controllable operation of devices based on such S/F heterostructures.
Topological spin configurations in proximity to a superconductor have recently attracted great interest due to the potential application of the former in spintronics and also as another platform for realizing non-trivial topological superconductors. Their application in these areas requires precise knowledge of the existing exchange fields and/or the stray-fields which are therefore essential for the study of these systems. Here, we determine the effective stray-field and the Meissner currents in a Superconductor/Ferromagnet/Superconductor (S/F/S) junction produced by various nonhomogenous magnetic textures in the F. The inhomogeneity arises either due to a periodic structure with flat domain walls (DW) or is caused by an isolated chiral magnetic skyrmion (Sk). We consider both Bloch- and N{e}el-type Sk and also analyze in detail the periodic structures of different types of DWs-- that is Bloch-type DW (BDW) and N{e}el-type DW (NDW) of finite width with in- and out-of-plane magnetization vector. The spatial dependence of the fields and Meissner currents are shown to be qualitatively different for the case of Bloch- and N{e}el-type magnetic textures. While the spatial distributions in the upper and lower S are identical for Bloch-type Sk and DWs they are asymmetric for the case of N{e}el-type magnetic textures. The depairing factor, which determines the critical temperature and which is related to vector potential of the stray-field, can have its maximum at the center of a magnetic domain but also, as we show, above the DW. For Sks the maximum is located at a finite distance within the Sk radius. Based on this, we study the nucleation of superconductivity in the presence of DWs. Because of the asymmetry for N{e}el-type structures, the critical temperature in the upper and lower S is expected to be different. The obtained results can also be applied to S/F bilayers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا