No Arabic abstract
Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory, recently developed for investigating the phase behaviour of colloidal spheres mixed with interacting polymers [Adv. Colloid Interface Sci. 143 (2008) 1-47]. It follows that the fluidfluid phase stability region where reversible supramolecular polymer chains can be mixed with nanospheres is sensitive to the energy of scission between the monomers and to the nanoparticle radius. One can then expect the fluidfluid coexistence curves to have a strong dependence on temperature and that shifting of phase boundaries within a single experimental system should be possible by varying the temperature. The calculations reveal the width of the stability region to be rather small. This implies that phase homogeneity of product formulations containing reversible supramolecular polymers is only possible at low nanoparticle concentrations.
We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, that results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.
In this paper we study a system of entangled chains that bear reversible cross-links in a melt state. The cross-links are tethered uniformly on the backbone of each chain. A slip-link type model for the system is presented and solved for the relaxation modulus. The effects of entanglements and reversible cross-linkers are modelled as discrete form of constraints that influence the motion of the primitive path. In contrast to a non-associating entangled system the model calculations demonstrate that the elastic modulus has a much higher first plateau and a delayed terminal relaxation. These effects are attributed to the evolution of the entangled chains as influenced by tethered reversible linkers. The model is solved for the case when linker survival time $tau_s$ is greater than the entanglement time $tau_e$ but less than the Rouse time $tau_R$.
We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.
We have performed light-scattering measurements in dilute and semidilute polymer solutions of polystyrene in toluene when subjected to stationary temperature gradients. Five solutions with concentrations below and one solution with a concentration above the overlap concentration were investigated. The experiments confirm the presence of long-range nonequilibrium concentration fluctuations which are proportional to $( abla T)^2/k^4$, where $ abla T$ is the applied temperature gradient and $k$ is the wave number of the fluctuations. In addition, we demonstrate that the strength of the nonequilibrium concentration fluctuations, observed in the dilute and semidilute solution regime, agrees with theoretical values calculated from fluctuating hydrodynamics. Further theoretical and experimental work will be needed to understand nonequilibrium fluctuations in polymer solutions at higher concentrations.
We find that conjugated polymers can undergo reversible structural phase transitions during electrochemical oxidation and ion injection. We study poly[2,5-bis(thiophenyl)-1,4-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene] (PB2T-TEG), a conjugated polymer with glycolated side chains. Using grazing incidence wide angle X-ray scattering (GIWAXS), we show that, in contrast to previously known polymers, this polymer switches between two structurally distinct crystalline phases associated with electrochemical oxidation/reduction in an aqueous electrolyte. Importantly, we show that this unique phase change behavior has important physical consequences for ion transport. Notably, using moving front experiments visualized by both optical microscopy and super-resolution photoinduced force microscopy (PiFM), we show that a propagating ion front in PB2T-TEG exhibits non-Fickian transport, retaining a sharp step-edge profile, in stark contrast to the Fickian diffusion more commonly observed. This structural phase transition is reminiscent of those accompanying ion uptake in inorganic materials like LiFePO$_{4}$. We propose that engineering similar properties in future conjugated polymers may enable the realization of new materials with superior performance in electrochemical energy storage or neuromorphic memory applications.