Do you want to publish a course? Click here

Influence of weak reversible cross-linkers on entangled polymer melt dynamics

90   0   0.0 ( 0 )
 Added by Jens-Uwe Sommer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study a system of entangled chains that bear reversible cross-links in a melt state. The cross-links are tethered uniformly on the backbone of each chain. A slip-link type model for the system is presented and solved for the relaxation modulus. The effects of entanglements and reversible cross-linkers are modelled as discrete form of constraints that influence the motion of the primitive path. In contrast to a non-associating entangled system the model calculations demonstrate that the elastic modulus has a much higher first plateau and a delayed terminal relaxation. These effects are attributed to the evolution of the entangled chains as influenced by tethered reversible linkers. The model is solved for the case when linker survival time $tau_s$ is greater than the entanglement time $tau_e$ but less than the Rouse time $tau_R$.



rate research

Read More

The spatial correlations of entangled polymer dynamics are examined by molecular dynamics simulations and neutron spin-echo spectroscopy. Due to the soft nature of topological constraints, the initial spatial decays of intermediate scattering functions of entangled chains are, to the first approximation, surprisingly similar to those of an unentangled system in the functional forms. However, entanglements reveal themselves as a long tail in the reciprocal-space correlations, implying a weak but persistent dynamic localization in real space. Comparison with a number of existing theoretical models of entangled polymers suggests that they cannot fully describe the spatial correlations revealed by simulations and experiments. In particular, the strict one-dimensional diffusion idea of the original tube model is shown to be flawed. The dynamic spatial correlation analysis demonstrated in this work provides a useful tool for interrogating the dynamics of entangled polymers. Lastly, the failure of the investigated models to even qualitatively predict the spatial correlations of collective single-chain density fluctuations points to a possible critical role of incompressibility in polymer melt dynamics.
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation time slowly for weak attraction while exponential dependence is observed for strong attraction. For fixed driving force and chain length the histogram of translocation time has a transition from Gaussian distribution to long-tailed distribution with increasing attraction. Under a weak driving force and a strong attractive force, both the translocation time and the residence time in the pore show a non-monotonic behavior as a function of the chain length. Our simulations results are in good agreement with recent experimental data.
A cornerstone of modern polymer physics is the `Flory ideality hypothesis which states that a chain in a polymer melt adopts `ideal random-walk-like conformations. Here we revisit theoretically and numerically this pivotal assumption and demonstrate that there are noticeable deviations from ideality. The deviations come from the interplay of chain connectivity and the incompressibility of the melt, leading to an effective repulsion between chain segments of all sizes $s$. The amplitude of this repulsion increases with decreasing $s$ where chain segments become more and more swollen. We illustrate this swelling by an analysis of the form factor $F(q)$, i.e. the scattered intensity at wavevector $q$ resulting from intramolecular interferences of a chain. A `Kratky plot of $q^2F(q)$ {em vs.} $q$ does not exhibit the plateau for intermediate wavevectors characteristic of ideal chains. One rather finds a conspicuous depression of the plateau, $delta(F^{-1}(q)) = |q|^3/32rho$, which increases with $q$ and only depends on the monomer density $rho$.
208 - Ji Xuan Hou 2010
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime for chains with $Z=40$ entanglements and into the terminal relaxation regime for $Z=10$. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter -free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments depend sensitively on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا